Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38752915

ABSTRACT

BACKGROUND AND OBJECTIVE: Machine teaching, a machine learning subfield, may allow for rapid development of artificial intelligence systems able to automatically identify emerging ocular biomarkers from small imaging datasets. We sought to use machine teaching to automatically identify retinal ischemic perivascular lesions (RIPLs) and subretinal drusenoid deposits (SDDs), two emerging ocular biomarkers of cardiovascular disease. MATERIALS AND METHODS: IRB approval was obtained. Four small datasets of SD-OCT B-scans were used to train and test two distinct automated systems, one identifying RIPLs and the other identifying SDDs. An open-source interactive machine-learning software program, RootPainter, was used to perform annotation and training simultaneously over a 6-hour period. RESULTS: For SDDs at the B-scan level, test-set accuracy = 92%, sensitivity = 100%, specificity = 88%, positive predictive value (PPV) = 82%, and negative predictive value (NPV) = 100%. For RIPLs at the B-scan level, test-set accuracy = 90%, sensitivity = 60%, specificity = 93%, PPV = 50%, and NPV = 95%. CONCLUSION: Machine teaching demonstrates promise within ophthalmic imaging to rapidly allow for automated identification of novel biomarkers from small image datasets. [Ophthalmic Surg Lasers Imaging Retina 2024;55:XX-XX.].

2.
JAMA Cardiol ; 8(11): 1089-1098, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37728933

ABSTRACT

Importance: Artificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology. Observations: At its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI. Conclusions and Relevance: Deep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Machine Learning , Prospective Studies , Neural Networks, Computer
3.
Am J Clin Nutr ; 116(6): 1877-1900, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36055772

ABSTRACT

Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.


Subject(s)
Evidence Gaps , Nutritional Status , Humans , United States , Precision Medicine/methods , Diet , National Institutes of Health (U.S.) , Nutrigenomics
SELECTION OF CITATIONS
SEARCH DETAIL
...