Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 370-376, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148878

ABSTRACT

In the title mol-ecule, C12H13N3O2S, the benzo-thia-zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O-HHydethy⋯NThz hydrogen bonds and weak C-HImdz⋯OImdz and C-HBnz⋯OImdz (Hydethy = hy-droxy-ethyl, Thz = thia-zole, Imdz = imidazolidine and Bnz = benzene) inter-actions, together with C-HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter-actions between thia-zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that in the crystal, C-H⋯N and C-H⋯O hydrogen-bond energies are 68.5 (for O-HHydethy⋯NThz), 60.1 (for C-HBnz⋯OImdz) and 41.8 kJ mol-1 (for C-HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state.

2.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 2): 281-287, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32071763

ABSTRACT

The title compound, C24H27Cl2NOS, contains 1,4-benzo-thia-zine and 2,4-di-chloro-phenyl-methyl-idene units in which the di-hydro-thia-zine ring adopts a screw-boat conformation. In the crystal, inter-molecular C-HBnz⋯OThz (Bnz = benzene and Thz = thia-zine) hydrogen bonds form chains of mol-ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C-HBnz⋯ClDchlphy (Dchlphy = 2,4-di-chloro-phen-yl) hydrogen bonds and C-HDchlphy⋯π (ring) inter-actions. These double chains are further linked by C-HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter-actions. Hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that in the crystal, C-HDchlphy⋯OThz, C-HBnz⋯OThz and C-HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol-1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.

3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 1): 95-101, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31921460

ABSTRACT

In the title mol-ecule, C24H21N5O·H2O, the di-hydro-benzo-diazole moiety is not quite planar, while the whole mol-ecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating mol-ecules and lattice water extending along [201] are formed by O-HUncoordW⋯ODhyr and O-HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = di-hydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C-HTrz⋯OUncoordW hydrogen bonds with the di-hydro-benzo-diazole units in adjacent layers inter-calating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] inter-actions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) inter-actions. Hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

4.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1940-1946, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871762

ABSTRACT

In the title mol-ecule, C11H10N2O, the di-hydro-benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C-HMthy⋯π(ring) inter-actions and C-HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di-hydro) hydrogen bonds form corrugated layers parallel to (10), which are associated through additional C-HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter-actions between di-hydro-benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter-actions. Hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C-H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C-HProp⋯ODhyr) and 20.2 (for C-HBnz⋯ODhyr) kJ mol-1. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

SELECTION OF CITATIONS
SEARCH DETAIL