Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(13): 4337-4353, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37204448

ABSTRACT

Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ~30 kDa. N-terminal sequencing of the ~30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ~30 kDa encapsulating protein of Bl 1821L and Bl 1951during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ~30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N. KEY POINTS: • Gene encoding the 31.4 kDa antibacterial Linocin M18 protein was identified • It defined the autocidal activity of Linocin M18 (encapsulating) protein • Identified the possible killing mechanism of the encapsulins.


Subject(s)
Bacillus , Bacteriocins , Brevibacillus , Animals , Brevibacillus/genetics , Brevibacillus/metabolism , Anti-Bacterial Agents/metabolism , Insecta
2.
PeerJ ; 10: e14491, 2022.
Article in English | MEDLINE | ID: mdl-36570000

ABSTRACT

Background: Beauveria are entomopathogenic fungi of a broad range of arthropod pests. Many strains of Beauveria have been developed and marketed as biopesticides. Beauveria species are well-suited as the active ingredient within biopesticides because of their ease of mass production, ability to kill a wide range of pest species, consistency in different conditions, and safety with respect to human health. However, the efficacy of these biopesticides can be variable under field conditions. Two under-researched areas, which may limit the deployment of Beauveria-based biopesticides, are the type and amount of insecticidal compounds produced by these fungi and the influence of diet on the susceptibility of specific insect pests to these entomopathogens. Methods: To understand and remedy this weakness, we investigated the effect of insect diet and Beauveria-derived toxins on the susceptibility of diamondback moth larvae to Beauveria infection. Two New Zealand-derived fungal isolates, B. pseudobassiana I12 Damo and B. bassiana CTL20, previously identified with high virulence towards diamondback moth larvae, were selected for this study. Larvae of diamondback moth were fed on four different plant diets, based on different types of Brassicaceae, namely broccoli, cabbage, cauliflower, and radish, before their susceptibility to the two isolates of Beauveria was assessed. A second experiment assessed secondary metabolites produced from three genetically diverse isolates of Beauveria for their virulence towards diamondback moth larvae. Results: Diamondback moth larvae fed on broccoli were more susceptible to infection by B. pseudobassiana while larvae fed on radish were more susceptible to infection by B. bassiana. Furthermore, the supernatant from an isolate of B. pseudobassiana resulted in 55% and 65% mortality for half and full-strength culture filtrates, respectively, while the filtrates from two other Beauveria isolates, including a B. bassiana isolate, killed less than 50% of larvae. This study demonstrated different levels of susceptibility of the insects raised on different plant diets and the potential use of metabolites produced by Beauveria isolates in addition to their conidia.


Subject(s)
Beauveria , Moths , Animals , Humans , Moths/microbiology , Biological Control Agents/pharmacology , Pest Control, Biological/methods , Insecta/microbiology , Larva/microbiology
3.
Biomolecules ; 12(8)2022 08 20.
Article in English | MEDLINE | ID: mdl-36009048

ABSTRACT

The Gram-positive and spore-forming bacterium Brevibacillus laterosporus (Bl) belongs to the Brevibacillus brevis phylogenetic cluster. Isolates of the species have demonstrated pesticidal potency against a wide range of invertebrate pests and plant diseases. Two New Zealand isolates, Bl 1821L and Bl 1951, are under development as biopesticides for control of diamondback moth and other pests. However, due to the often-restricted growth of these endemic isolates, production can be an issue. Based on the previous work, it was hypothesised that the putative phages might be involved. During investigations of the cause of the disrupted growth, electron micrographs of crude lysate of Bl 1821L showed the presence of phages' tail-like structures. A soft agar overlay method with PEG 8000 precipitation was used to differentiate between the antagonistic activity of the putative phage and phage tail-like structures (bacteriocins). Assay tests authenticated the absence of putative phage activity. Using the same method, broad-spectrum antibacterial activity of Bl 1821L lysate against several Gram-positive bacteria was found. SDS-PAGE of sucrose density gradient purified and 10 kD MWCO concentrated lysate showed a prominent protein band of ~48 kD, and transmission electron microscopy revealed the presence of polysheath-like structures. N-terminal sequencing of the ~48 kD protein mapped to a gene with weak predicted amino acid homology to a Bacillus PBSX phage-like element xkdK, the translated product of which shared >90% amino acid similarity to the phage tail-sheath protein of another Bl published genome, LMG15441. Bioinformatic analysis also identified an xkdK homolog in the Bl 1951 genome. However, genome comparison of the region around the xkdK gene between Bl 1821L and Bl 1951 found differences including two glycine rich protein encoding genes which contain imperfect repeats (1700 bp) in Bl 1951, while a putative phage region resides in the analogous Bl 1821L region. Although comparative analysis of the genomic organisation of Bl 1821L and Bl 1951 PBSX-like region with the defective phages PBSX, PBSZ, and PBP 180 of Bacillus subtilis isolates 168 and W23, and Bacillus phage PBP180 revealed low amino acids similarity, the genes encode similar functional proteins in similar arrangements, including phage tail-sheath (XkdK), tail (XkdO), holin (XhlB), and N-acetylmuramoyl-l-alanine (XlyA). AMPA analysis identified a bactericidal stretch of 13 amino acids in the ~48 kD sequenced protein of Bl 1821L. Antagonistic activity of the purified ~48 kD phage tail-like protein in the assays differed remarkably from the crude lysate by causing a decrease of 34.2% in the number of viable cells of Bl 1951, 18 h after treatment as compared to the control. Overall, the identified inducible phage tail-like particle is likely to have implications for the in vitro growth of the insect pathogenic isolate Bl 1821L.


Subject(s)
Bacillus , Bacteriocins , Bacteriophages , Amino Acids/metabolism , Animals , Bacteriophages/genetics , Bacteriophages/metabolism , Brevibacillus , Insecta , Phylogeny
4.
Microorganisms ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336221

ABSTRACT

Diamondback moth (DBM) is an important horticultural pest worldwide as the larvae of these moths feed on the leaves of cruciferous vegetables. As DBM has developed resistance to more than 100 classes of synthetic insecticides, new biological control options are urgently required. Beauveria species are entomopathogenic fungi recognized as the most important fungal genus for controlling a wide range of agricultural, forestry, and veterinary arthropod pests. Previous research, aimed at developing new Beauveria-based biopesticides for DBM, has focused on screening single isolates of Beauveria bassiana. However, these fungal isolates have individual requirements, which may limit their effectiveness in some environments. This current study separately assessed 14 Beauveria isolates, from a range of habitats and aligned to four different species (Beauveria bassiana, B. caledonica, B. malawiensis, and B. pseudobassiana), to determine the most effective isolate for the control of DBM. Further assays then assessed whether selected combinations of these fungal isolates could increase the overall efficacy against DBM. Six Beauveria isolates (three B. bassiana and three B. pseudobassiana) achieved high DBM mortality at a low application rate with the first documented report of B. pseudobassiana able to kill 100% of DBM larvae. Further research determined that applications of low-virulent Beauveria isolates improved the control of DBM compared to mixtures containing high-virulent isolates. This novel approach increased the DBM pest mortality and shortened the time to kill.

5.
PLoS One ; 16(11): e0259912, 2021.
Article in English | MEDLINE | ID: mdl-34847168

ABSTRACT

When successful, the operation of local and international networks of crop seed distribution or "seed systems" ensures farmer access to seed and impacts rural livelihoods and food security. Farmers are both consumers and producers in seed systems and benefit from access to global markets. However, phytosanitary measures and seed purity tests are also needed to maintain seed quality and prevent the spread of costly weeds, pests and diseases, in some countries regulatory controls have been in place since the 1800s. Nevertheless, seed contaminants are internationally implicated in between 7% and 37% of the invasive plant species and many of the agricultural pests and diseases. We assess biosecurity risk across international seed trade networks of forage crops using models of contaminant spread that integrate network connectivity and trade volume. To stochastically model hypothetical contaminants through global seed trade networks, realistic dispersal probabilities were estimated from quarantine weed seed detections and incursions from border security interception data in New Zealand. For our test case we use contaminants linked to the global trade of ryegrass and clover seed. Between 2014 and 2018 only four quarantine weed species (222 species and several genera are on the quarantine schedule) warranting risk mitigation were detected at the border. Quarantine weeds were rare considering that average import volumes were over 190 tonnes for ryegrass and clover, but 105 unregulated contaminant species were allowed in. Ryegrass and clover seed imports each led to one post-border weed incursion response over 20 years. Trade reports revealed complex global seed trade networks spanning >134 (ryegrass) and >110 (clover) countries. Simulations showed contaminants could disperse to as many as 50 (clover) or 80 (ryegrass) countries within 10 time-steps. Risk assessed via network models differed 18% (ryegrass) or 48% (clover) of the time compared to risk assessed on trade volumes. We conclude that biosecurity risk is driven by network position, the number of trading connections and trade volume. Risk mitigation measures could involve the use of more comprehensive lists of regulated species, comprehensive inspection protocols, or the addition of field surveillance at farms where seed is planted.


Subject(s)
Agriculture/methods , Commerce/standards , Seed Bank/trends , Biosecurity/trends , Commerce/trends , Computer Security , Crops, Agricultural/growth & development , Farmers , Farms , Introduced Species , New Zealand , Quarantine , Seeds/growth & development
6.
PLoS One ; 16(8): e0256623, 2021.
Article in English | MEDLINE | ID: mdl-34437599

ABSTRACT

Imports of seeds for sowing are a major pathway for the introduction of contaminant seeds, and many agricultural weeds globally naturalised originally have entered through this pathway. Effective management of this pathway is a significant means of reducing future plant introductions and helps minimise agricultural losses. Using a national border inspection database, we examined the frequency, origin and identity of contaminant seeds within seed for sowing shipments entering New Zealand between 2014-2018. Our analysis looked at 41,610 seed lots across 1,420 crop seed species from over 90 countries. Overall, contamination was rare, occurring in 1.9% of all seed lots. Among the different crop types, the arable category had the lowest percentage of seed lots contaminated (0.5%) and the forage category had the highest (12.6%). Crop seeds Capsicum, Phaseolus and Solanum had the lowest contamination rates (0.0%). Forage crops Medicago (27.3%) and Trifolium (19.8%) had the highest contamination rates. Out of 191 genera recorded as contaminants, Chenopodium was the most common. Regulated quarantine weeds were the rarest contaminant type, only occurring in 0.06% of seed lots. Sorghum halepense was the most common quarantine species and was only found in vegetable seed lots. Vegetable crop seed lots accounted for approximately half of all quarantine species detections, Raphanus sativus being the most contaminated vegetable crop. Larger seed lots were significantly more contaminated and more likely to contain a quarantine species than smaller seed lots. These findings support International Seed Testing Association rules on maximum seed lot weights. Low contamination rates suggest industry practices are effective in minimising contaminant seeds. Considering New Zealand inspects every imported seed lot, utilises a working sample size 5 times larger than International Seed Testing Association rules require, trades crop seed with approximately half of the world's countries and imports thousands of crop seed species, our study provides a unique overview of contaminant seeds that move throughout the seed for sowing system.


Subject(s)
Commerce , Plant Weeds/physiology , Seeds/physiology , Crops, Agricultural/physiology , New Zealand , Species Specificity
7.
Front Plant Sci ; 11: 530, 2020.
Article in English | MEDLINE | ID: mdl-32457777

ABSTRACT

Many cool-season grasses form permanent, mutualistic symbioses with asexual Epichloë endophytes. These fungal symbionts often perform a protective role within the association as many strains produce secondary metabolites that deter certain mammalian and invertebrate herbivores. Although initially a serious issue for agriculture, due to mammalian toxins that manifested in major animal health issues, selected strains that provide abiotic stress protection to plants with minimal ill effects to livestock are now commercialized and routinely used to enhance pasture performance in many farming systems. These fungal endophytes and their grass hosts have coevolved over millions of years, and it is now generally accepted that most taxonomic groupings of Epichloë are confined to forming compatible associations (i.e., symptomless associations) with related grass genera within a tribe. The most desired compounds associated with Epichloë festucae var. lolii, an endophyte species associated with perennial ryegrass, are peramine and epoxy-janthitrems. No other major secondary metabolites with invertebrate bioactivity have been identified within this association. However, other agriculturally beneficial compounds, such as lolines, have been discovered in related endophyte species that form associations with fescue grasses. A rationale therefore existed to develop novel grass-endophyte associations between loline-producing endophytes originally isolated from tall fescue with elite cultivars of perennial ryegrass to achieve a wider spectrum of insect bioactivity. A suitable loline-producing endophyte strain of Epichloë sp. FaTG-3 was selected and inoculated into perennial ryegrass. We hypothesed that endophyte transmission frequency, endophyte mycelial biomass and endophyte-derived alkaloid production would differ between the original tall fescue host and the artificial association. Consistent with our hypothesis, our data strongly suggest that plant species significantly affected the plant-endophyte association. This effect became more apparent for transmission frequency and endophyte biomass as the plants matured. Overall, the viable endophyte infection frequency was greater in the tall fescue host than in perennial ryegrass, at all sampling dates. Additionally, temperature was found to be a significant factor affecting endophyte transmission frequency, endophyte mycelial biomass and alkaloid production. Implications for the development of novel grass-endophyte associations are discussed.

8.
PLoS One ; 14(5): e0216341, 2019.
Article in English | MEDLINE | ID: mdl-31116753

ABSTRACT

Brevibacillus laterosporus (Bl), is an insecticidal bacterium recorded as toxic to a range of invertebrates after ingestion. Isolates of Bl, which were initially recovered from surface-sterilised cabbage (Brassica oleracea var. capitata) seeds, were able to colonise brassica plants in the laboratory and field. The bacterium was recovered from surface-sterilised leaf, stem and root sections of seedlings after inoculation with Bl vegetative cells under laboratory conditions, and from mature cabbage plants sprayed with Bl in a field trial. The identity of the recovered bacterial isolates was confirmed by PCR through amplification of 16S rDNA and two strain-specific regions. The effect on diamondback moth (DBM) insect herbivory was tested with cabbage seedlings treated with one isolate (Bl 1951) as the strains are toxic to DBM after direct ingestion. While no effect on DBM larval herbivory was observed, there was a significant reduction of DBM pupation on the Bl 1951 colonised plants. The presence of Bl 1951 wild type cells within cabbage root tissue was confirmed by confocal microscopy, establishing the endophytic nature of the bacterium. The bacterium was also endophytic in three other brassica species tested, Chinese kale (Brassica oleracea var. alboglabra), oilseed rape (Brassica napus var. oleifera) and radish (Raphanus sativus).


Subject(s)
Brassica/microbiology , Brevibacillus/pathogenicity , Endophytes/pathogenicity , Animals , Insecticides , Moths/microbiology , Plant Leaves/microbiology , Seeds/microbiology
9.
J Virol Methods ; 171(1): 46-52, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20933015

ABSTRACT

This study investigated the suitability of a two step real-time RT-PCR melting curve analysis as a tool for the detection and discrimination of nine species in the plant virus family Luteoviridae, being Soybean dwarf virus [SbDV], Bean leafroll virus [BLRV], Beet chlorosis virus [BChV], Beet mild yellowing virus [BMYV], Beet western yellows virus [BWYV], Cereal yellow dwarf virus-RPV [CYDV-RPV], Cucurbit aphid-borne yellows virus [CABYV], Potato leafroll virus [PLRV] and Turnip yellows virus [TuYV]. Melting temperature and shape of the melting peak were analysed for 68 bp and 148 bp coat protein gene amplicons using SYBR® GreenER™ fluorescent dye. Specific melting peaks with unique melting temperature were observed for the various species of the family Luteoviridae using the 68 bp amplicon, but not with the 148 bp amplicon. Due to the high variability of sequences for some members of this family, different melting temperatures were also observed between different isolates of the species CYDV-RPV and TuYV. Nevertheless, discrimination between species was achieved for SbDV, BLRV, BChV, BMYV, CABYV and either PLRV or BWYV. Melting curve analysis, in this study, is a faster and more discriminatory alternative to gel electrophoresis of end-point PCR products for the detection of Luteoviridae infection.


Subject(s)
DNA, Viral/chemistry , Luteoviridae/classification , Luteoviridae/isolation & purification , Plant Diseases/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Virology/methods , Capsid Proteins/genetics , DNA, Viral/genetics , Fluorescent Dyes , Luteoviridae/genetics , Sensitivity and Specificity , Staining and Labeling/methods , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...