Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(1): 300-315, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37962303

ABSTRACT

Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.


Subject(s)
Factor VIII , Introns , RNA Splicing , Humans , Alternative Splicing , Exons , Factor VIII/genetics , RNA , RNA Precursors
2.
bioRxiv ; 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37034721

ABSTRACT

The human Factor VIII ( F8 ) protein is essential for the blood coagulation cascade and specific F8 mutations cause the rare bleeding disorder Hemophilia A (HA). Here, we investigated the impact of HA-causing single-nucleotide mutations on F8 pre-mRNA splicing. We found that 14/97 (∼14.4%) coding sequence mutations tested in our study induced exon skipping. Splicing patterns of 4/11 (∼36.4%) F8 exons tested were especially sensitive to the presence of common disease-causing mutations. RNA-chemical probing analyses revealed a three-way junction structure at the 3' end of intron 15 (TWJ-3-15). TWJ-3-15 sequesters the polypyrimidine tract, a key determinant of 3' splice site strength. Using exon-16 of the F8 gene as a model, we designed specific antisense oligonucleotides (ASOs) that target TWJ-3-15 and identified three that promote the splicing of F8 exon-16. Interaction of TWJ-3-15 with ASOs increases accessibility of the polypyrimidine tract and inhibits the binding of hnRNPA1-dependent splicing silencing factors. Moreover, ASOs targeting TWJ-3-15 rescue diverse splicing-sensitive HA-causing mutations, most of which are distal to the 3' splice site being impacted. The TWJ-3-15 structure and its effect on mRNA splicing provide a model for HA etiology in patients harboring specific F8 mutations and provide a framework for precision RNA-based HA therapies.

3.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36697255

ABSTRACT

During meiosis, programmed double-strand DNA breaks are repaired to form exchanges between the parental chromosomes called crossovers. Chromosomes lacking a crossover fail to segregate accurately into the gametes, leading to aneuploidy. In addition to engaging the homolog, crossover formation requires the promotion of exchanges, rather than non-exchanges, as repair products. However, the mechanism underlying this meiosis-specific preference is not fully understood. Here, we study the regulation of meiotic sister chromatid exchanges in Caenorhabditis elegans by direct visualization. We find that a conserved chromosomal interface that promotes exchanges between the parental chromosomes, the synaptonemal complex, can also promote exchanges between the sister chromatids. In both cases, exchanges depend on the recruitment of the same set of pro-exchange factors to repair sites. Surprisingly, although the synaptonemal complex usually assembles between the two DNA molecules undergoing an exchange, its activity does not rely on a specific chromosome conformation. This suggests that the synaptonemal complex regulates exchanges-both crossovers and sister exchanges-by establishing a nuclear domain conducive to nearby recruitment of exchange-promoting factors.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Synaptonemal Complex/genetics , Caenorhabditis elegans Proteins/genetics , Chromatids/genetics , DNA
4.
STAR Protoc ; 3(2): 101344, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35509971

ABSTRACT

Reciprocal exchanges between genetically identical sister chromatids (sister chromatid exchanges or SCEs) have been challenging to study. Here, we describe a protocol that utilizes a pulse/chase of the thymidine analog 5-ethyl-3'-deoxyuridine (EdU) in combination with click chemistry and antibody labeling to selectively label sister chromatids in the C. elegans germline. Labeling has no discernable effects on meiosis, allowing for cytological quantification of SCEs. This protocol can be combined with a variety of imaging approaches, including STED, confocal and super-resolution. For complete details on the use and execution of this protocol, please refer to Almanzar et al. (2021).


Subject(s)
Caenorhabditis elegans , Deoxyuridine/chemistry , Sister Chromatid Exchange , Animals , Caenorhabditis elegans/genetics , Germ Cells , Meiosis , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...