Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychophysiology ; : e14605, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715216

ABSTRACT

Piloerection (e.g., goosebumps) is an essential thermoregulatory and social signaling mechanism in non-human animals. Although humans also experience piloerection-often being perceived as an indicator of profound emotional experiences-its comparatively less effective role in thermoregulation and communication might influence our capacity to monitor its occurrence. We present three studies (total N = 617) demonstrating participants' general inability to detect their own piloerection events and their lack of awareness that piloerection occurs with a similar frequency on multiple anatomical locations. Self-reported goosebumps were more frequent than observed piloerection. However, only 31.8% of self-reports coincided with observable piloerection, a bias unrelated to piloerection intensity, anatomical location, heart-rate variability, or interoceptive awareness. We also discovered a self-report bias for the forearm, contradicting the observation that piloerection occurs with equal frequency on multiple anatomical locations. Finally, there was low correspondence between self-reports of being "emotionally moved" and observed piloerection. These counterintuitive findings not only highlight a disconnect between an obvious physiological response and our capacity for self-monitoring, but they underscore a fascinating divergence between human and non-human species. Although piloerection is vital in non-human organisms, the connection between piloerection and psychological experience in humans may be less significant than previously assumed, possibly due to its diminished evolutionary relevance.

2.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: mdl-35483404

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
3.
bioRxiv ; 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34611663

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA, and sustained interferon (IFN) response all of which are recapitulated and required for pathology in the SARS-CoV-2 infected MISTRG6-hACE2 humanized mouse model of COVID-19 with a human immune system 1-20 . Blocking either viral replication with Remdesivir 21-23 or the downstream IFN stimulated cascade with anti-IFNAR2 in vivo in the chronic stages of disease attenuated the overactive immune-inflammatory response, especially inflammatory macrophages. Here, we show SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release IL-1 and IL-18 and undergo pyroptosis thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and its accompanying inflammatory response is necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Remarkably, this same blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 by production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...