Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Mitochondrial DNA B Resour ; 8(11): 1192-1195, 2023.
Article in English | MEDLINE | ID: mdl-37937100

ABSTRACT

In this study, the complete mitochondrial genome of Chlorogomphus shanicus Wilson, 2002 was reported, and the maximum-likelihood (ML) phylogenetic tree was constructed using 13 protein-coding genes (PCGs). The total length of the mitogenome of C. shanicus was 15,497 bp. Twelve PCGs started with ATN codons, except cox1 began with TTG codon. Most transfer RNA genes (tRNAs) were predicted to fold in a typical cloverleaf structure, except the trnS1 (gct), which lacked a dihydrouridine arm that had been simplified to a loop. The phylogenetic tree showed that Anisoptera was split into two clades, and revealed that C. shanicus was closely related to Cordulegaster boltonii (Donovan, 1807) which is endemic to Europe.

2.
Microbiome ; 11(1): 142, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365664

ABSTRACT

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Subject(s)
Cyanobacteria , Microcystis , Organophosphonates , Microcystis/genetics , Microcystis/metabolism , Ecosystem , Organophosphonates/metabolism , Cyanobacteria/genetics , Phytoplankton , Lakes/microbiology , Phosphorus/metabolism
3.
Microbiol Spectr ; 11(3): e0039823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37098981

ABSTRACT

Understanding the biogeographical and biodiversity patterns of bacterial communities is essential in unraveling their responses to future environmental changes. However, the relationships between marine planktonic bacterial biodiversity and seawater chlorophyll a are largely understudied. Here, we used high-throughput sequencing to study the biodiversity patterns of marine planktonic bacteria across a broad chlorophyll a gradient spanning from the South China Sea across the Gulf of Bengal to the northern Arabian Sea. We found that the biogeographical patterns of marine planktonic bacteria complied with the scenario of homogeneous selection, with chlorophyll a concentration being the key environmental selecting variable of bacteria taxa. The relative abundance of Prochlorococcus, the SAR11 clade, the SAR116 clade, and the SAR86 clade significantly decreased in habitats with high chlorophyll a concentrations (>0.5 µg/L). Free-living bacteria (FLB) and particle-associated bacteria (PAB) displayed contrasting alpha diversity and chlorophyll a relationships with a positive linear correlation for FLB but a negative correlation for PAB. We further found that PAB had a narrower niche breadth of chlorophyll a than did FLB, with far fewer bacterial taxa being favored at higher chlorophyll a concentrations. Higher chlorophyll a concentrations were linked to the enhanced stochastic drift and reduced beta diversity of PAB but to the weakened homogeneous selection, enhanced dispersal limitation, and increased beta diversity of FLB. Taken together, our findings might broaden our knowledge about the biogeography of marine planktonic bacteria and advance the understanding of bacterial roles in predicting ecosystem functioning under future environmental changes that are derived from eutrophication. IMPORTANCE One of the long-standing interests of biogeography is to explore diversity patterns and uncover their underlying mechanisms. Despite intensive studies on the responses of eukaryotic communities to chlorophyll a concentrations, we know little about how changes in seawater chlorophyll a concentrations affect free-living bacteria (FLB) and particle-associated bacteria (PAB) diversity patterns in natural systems. Our biogeography study demonstrated that marine FLB and PAB displayed contrasting diversity and chlorophyll a relationships and exhibited completely different assembly mechanisms. Our findings broaden our knowledge about the biogeographical and biodiversity patterns of marine planktonic bacteria in nature systems and suggest that PAB and FLB should be considered independently in predicting marine ecosystem functioning under future frequent eutrophication.


Subject(s)
Ecosystem , Plankton , Chlorophyll A , Plankton/genetics , Biodiversity , Bacteria/genetics , Seawater/microbiology , China
4.
Microb Ecol ; 86(3): 2073-2085, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37042985

ABSTRACT

Understanding microbial community structure and the underlying control mechanisms are fundamental purposes of aquatic ecology. However, little is known about the seasonality and how trophic conditions regulate plankton community in subtropical reservoirs. In this study, we study the prokaryotic and picoeukaryotic communities and their interactions during wet and dry seasons in two subtropical reservoirs: one at oligotrophic state and another at mesotrophic state. Distinct microbial community compositions (prokaryotes and picoeukaryotes) and seasonal variation pattern were detected in the oligotrophic and mesotrophic reservoirs. The interactions between prokaryotic and picoeukaryotic communities were more prevalent in the oligotrophic reservoir, suggesting enhanced top-down control of small eukaryotic grazers on the prokaryotic communities. On the other hand, the microbial community in the mesotrophic reservoir was more influenced by physico-chemical parameters and showed a stronger seasonal variation, which may be the result of distinct nutrient levels in wet and dry seasons, indicating the importance of bottom-up control. Our study contributes to new understandings of the environmental and biological processes that shape the structure and dynamics of the planktonic microbial communities in reservoirs of different trophic states.


Subject(s)
Microbiota , Plankton , Eukaryota , Seasons
5.
iScience ; 26(2): 106006, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36798432

ABSTRACT

Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.

6.
Evolution ; 77(2): 422-436, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36622816

ABSTRACT

The center-periphery hypothesis (CPH) predicts that peripheral populations will have lower genetic variation than those at the center of a species' distribution. However, ecological margins do not always coincide with geographical edges when topographies are diverse. Historical climate changes can also strongly affect genetic variation. Here, we examined genetic variation in Phyllodiaptomus tunguidus, a calanoid copepod endemic to the north-eastern Oriental. This species was predicted to exhibit a complex pattern of genetic variation across its range due to the diverse topographies and stable climate history of the north-eastern Oriental. To test this, we used geographic distance to the center of the distribution, current ecological suitability, and climate during the last glacial maximum as geographical, ecological, and historical factors, respectively, in our analyses. We measured genetic diversity and population differentiation using mitochondrial and nuclear markers. This showed that P. tunguidus had 3 refugia during the last glacial maximum (LGM). Such a pattern of multiple refugia complicates the determination of the center and periphery of spatial genetic diversity. Both regression models and redundancy analyses failed to support the CPH. Instead, they showed that geographical, ecological, and historical factors together shaped population genetic structure in this species. Ecological factors explained significantly more genetic variation than did geographical and historical factors-however, all three factors interacted significantly to affect the pattern of genetic variation. The results extend our understanding of the CPH and the extent to which it can explain genetic variation across populations.


Subject(s)
Copepoda , Genetic Variation , Animals , Copepoda/genetics , Geography , Refugium , Phylogeography , Phylogeny , Genetics, Population
7.
Zootaxa ; 5380(1): 1-25, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38220794

ABSTRACT

Cladoceran (Crustacea: Branchiopoda) fauna of Hunan and Hubei provinces of China was studied in April 2014 and October 2018. 49 species of Cladocera were found, Anthalona sanoamuangae Sinev & Kotov, 2012 was recorded for China for the first time. Eight species were newly recorded for central China, taxonomic status of four species was clarified. Among the observed species, 19 taxa are predominantly Boreal, 13 species are recorded predominantly in south part of temperate zone and subtropics, and 17 species are mainly tropical. Significant difference was revealed between the spring and autumn fauna: Boreal species were the most frequent in spring, whereas subtropical and tropical species became more common in autumn. Species diversity and composition of the cladoceran fauna in the center of East Asia plain is discussed.


Subject(s)
Cladocera , Animals , China , Asia, Eastern
8.
Front Microbiol ; 13: 1041011, 2022.
Article in English | MEDLINE | ID: mdl-36439856

ABSTRACT

Daphnia galeata is a common and dominant species in warmer waters, and has a strong top-down effect on both phytoplankton and bacteria. The knowledge of its temporal and spatial patterns of genetic diversity is fundamental in understanding its population dynamics and potential ecological function in ecosystems. Its population genetics have been investigated at regional scales but few within regions or at smaller spatial scales. Here, we examined the fine-scale spatial genetic variation of D. galeata within four large, deep reservoirs in wet and dry seasons and the six-year variation of genetic diversity in one of the reservoirs by using cytochrome c oxidase subunit I and microsatellites (simple sequence repeat). Our study shows that fine-scale spatial genetic variation commonly occurred within the reservoirs, indicating strong environmental selection at least in the two of reservoirs with strong longitudinal gradients. Since the environmental gradients established in the dry season was largely reduced in the wet season, the fine-scale spatial genetic variation was much higher in the dry season. The dynamics of local genetic diversity did not follow the theoretical pattern of rapid erosion but peaked in mid or mid-late growth season. The local genetic diversity of D. galeata appears to be shaped and maintained not only by recruitment from resting egg banks but also by gene flow within reservoirs. The temporal and fine-scale genetic variation within a water body suggests that it is necessary to pay attention to sampling periods and locations of a given water body in regional studies.

9.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35946347

ABSTRACT

Biological nitrogen fixation (BNF) by cyanobacteria is of significant importance for the Earth's biogeochemical nitrogen cycle but is restricted to a few genera that do not form monophyletic group. To explore the evolutionary trajectory of BNF and investigate the driving forces of its evolution, we analyze 650 cyanobacterial genomes and compile the database of diazotrophic cyanobacteria based on the presence of nitrogen fixation gene clusters (NFGCs). We report that 266 of 650 examined genomes are NFGC-carrying members, and these potentially diazotrophic cyanobacteria are unevenly distributed across the phylogeny of Cyanobacteria, that multiple independent losses shaped the scattered distribution. Among the diazotrophic cyanobacteria, two types of NFGC exist, with one being ancestral and abundant, which have descended from diazotrophic ancestors, and the other being anaerobe-like and sparse, possibly being acquired from anaerobic microbes through horizontal gene transfer. Interestingly, we illustrate that the origin of BNF in Cyanobacteria coincide with two major evolutionary events. One is the origin of multicellularity of cyanobacteria, and the other is concurrent genetic innovations with massive gene gains and expansions, implicating their key roles in triggering the evolutionary transition from nondiazotrophic to diazotrophic cyanobacteria. Additionally, we reveal that genes involved in accelerating respiratory electron transport (coxABC), anoxygenic photosynthetic electron transport (sqr), as well as anaerobic metabolisms (pfor, hemN, nrdG, adhE) are enriched in diazotrophic cyanobacteria, representing adaptive genetic signatures that underpin the diazotrophic lifestyle. Collectively, our study suggests that multicellularity, together with concurrent genetic adaptations contribute to the evolution of diazotrophic cyanobacteria.


Subject(s)
Cyanobacteria , Nitrogen Fixation , Cyanobacteria/genetics , Gene Transfer, Horizontal , Nitrogen/metabolism , Nitrogen Fixation/genetics , Photosynthesis/genetics , Phylogeny
10.
Biology (Basel) ; 11(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35741389

ABSTRACT

Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie's range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.

11.
Water Res ; 217: 118385, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35405550

ABSTRACT

Aquatic ecosystems comprise almost half of total global methane emissions. Recent evidence indicates that a few strains of cyanobacteria, the predominant primary producers in bodies of water, can produce methane under oxic conditions with methylphosphonate serving as substrate. In this work, we have screened the published 2 568 cyanobacterial genomes for genetic elements encoding phosphonate-metabolizing enzymes. We show that phosphonate degradation (phn) gene clusters are widely distributed in filamentous cyanobacteria, including several bloom-forming genera. Algal growth experiments revealed that methylphosphonate is an alternative phosphorous source for four of five tested strains carrying phn clusters, and can sustain cellular metabolic homeostasis of strains under phosphorus stress. Liberation of methane by cyanobacteria in the presence of methylphosphonate occurred mostly during the light period of a 12 h/12 h diurnal cycle and was suppressed in the presence of orthophosphate, features that are consistent with observations in natural aquatic systems under oxic conditions. The results presented here demonstrate a genetic basis for ubiquitous methane emission via cyanobacterial methylphosphonate mineralization, while contributing to the phosphorus redox cycle.


Subject(s)
Cyanobacteria , Organophosphonates , Cyanobacteria/genetics , Cyanobacteria/metabolism , Ecosystem , Methane , Organophosphorus Compounds , Phosphorus/metabolism
12.
Water Res ; 216: 118298, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35316678

ABSTRACT

Thermal effluents from coastal nuclear power plants have led to undesirable pollution and subsequent ecological impacts on local marine ecosystems. However, despite the ecological importance, we know little about the impacts on functionality of bacterioplankton subjected in systems with long-term thermal pollution. We used metagenomic sequencing to study of the effect of thermal pollution on bacterioplankton community metagenomics in summer in a subtropical bay located on the northern coast of the South China Sea. Thermal pollution (>15 y), which resulted in an increase in the summer seawater temperature around 8°C and caused seawater temperature up to approximate 39°C, significantly decreased bacterioplankton metabolic potentials in photosynthesis, organic carbon synthesis, and energy production. The bacterioplankton community metagenomics underwent a significant change in its structure from Synechococcus-dominant autotrophy to Alteromonas, Vibrio, and Pseudoalteromonas-dominated heterotrophy, and significantly up-regulated genes involved in organic compound degradation and dissimilatory nitrate reduction for the matter and energy acquisition under thermal pollution. Moreover, the bacterioplankton community metagenomics showed an up-regulation with heating of genes involved in DNA repair systems, heat shock responsive chaperones and proteins, and proteins involved in other biological processes, such as biofilm formation and the biosynthesis of unsaturated fatty acids and glycan, to adapt to the thermal environment. Collectively, it indicates a functional regulation of bacterioplankton adaptation to high-temperature stress, which might advance the understanding of the molecular mechanisms of community adaptation to global extreme warming in aquatic ecosystems.


Subject(s)
Metagenomics , Plankton , Aquatic Organisms , Bacteria/genetics , Bays , Ecosystem , Seawater
13.
Water Res ; 214: 118215, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35228039

ABSTRACT

Nutrient storage is considered a critical strategy for algal species to adapt to a fluctuating nutrient supply. Luxury phosphorus (P) uptake into storage of polyphosphate extends the duration of cyanobacterial dominance and their blooms under P deficiency. However, it is unclear whether nitrogen (N) storage in the form of cyanophycin supports persistent cyanobacterial dominance or blooms in the tropics where N deficiency commonly occurs in summer. In this study, we examined genes for cyanophycin synthesis and degradation in Raphidiopsis raciborskii, a widespread and dominant cyanobacterium in tropical waters; and detected the cyanophycin accumulation under fluctuating N concentrations and its ecological role in the population dynamics of the species. The genes for cyanophycin synthesis (cphA) and degradation (cphB) were highly conserved in 21 out of 23 Raphidiopsis strains. This suggested that the synthesis and degradation of cyanophycin are evolutionarily conserved to support the proliferation of R. raciborskii in N-fluctuating and/or deficient conditions. Isotope 15N-NaNO3 labeling experiments showed that R. raciborskii QDH7 always commenced to synthesize and accumulate cyanophycin under fluctuating N conditions, regardless of whether exogenous N was deficient. When the NO3--N concentration exceeded 1.2 mg L-1, R. raciborskii synthesized cyanophycin primarily through uptake of 15N-NaNO3. However, when the NO3--N concentration was below 1.0 mg L-1, cyanophycin-based N was derived from unlabeled N2, as evidenced by increased dinitrogenase activity. Cells grown under NO3--N < 1.0 mg L-1 had lower cyanophycin accumulation rates than cells grown under NO3--N > 1.2 mg L-1. Our field investigation in a large tropical reservoir underscored the association between cyanophycin content and the population dynamics of R. raciborskii. The cyanophycin content was high in N-sufficient (NO3--N > 0.45 mg L-1) periods, and decreased in N-deficient summer. In summer, R. raciborskii sustained a relatively high biomass and produced few heterocysts (< 1%). These findings indicated that cyanophycin-released N, rather than fixed N, supported persistent R. raciborskii blooms in N-deficient seasons. Our study suggests that the highly adaptive strategy in a N2-fixing cyanobacterial species makes mitigating its bloom more difficult than previously assumed.

14.
Zookeys ; 1083: 89-107, 2022.
Article in English | MEDLINE | ID: mdl-35115873

ABSTRACT

Corydoras is a speciose catfish genus from South America with widely investigated phylogenetic and evolutionary relationships. The complete mitogenomes of C.aeneus and C.paleatus were sequenced, assembled, and annotated using next-generation sequencing. The genome arrangements, gene contents, genome structures, base compositions, evolutionary features, codon usage, and tRNA structures of the two mitogenomes were compared and analyzed with nine published mitogenomes of Corydoras. Phylogenetic analysis was performed using concatenated nucleotide sequences with 13 protein-coding genes and two rRNAs with 44 mitogenomes of Siluriformes. These results provide information on the mitogenomes of eleven Corydoras species and evolutionary relationships within the suborder Loricarioidei, which may be applicable for further phylogenetic and taxonomic studies on Siluriformes and Loricarioidei.

15.
Gene ; 818: 146230, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35093448

ABSTRACT

Chydoridae are phytophilic-benthic microcrustaceans that make up a significant proportion of species diversity and play an important role in the littoral zone of freshwater ecosystems worldwide. Here, we provide the complete mitochondrial genome of Ovalona pulchella (King, 1853), determined by next-generation sequencing. The entire mitochondrial genome is 15,362 bp in length; this is the first sequenced mitochondrial genome in the family Chydoridae. The base composition and codon usage were typical of Cladocera species. The mitochondrial gene arrangement (37 genes) was not consistent with that of other Branchiopoda. Both maximum likelihood and Bayesian analyses supported each suborder and family of Branchiopoda as monophyletic groups. The relationships among the families were as follows: [(Leptestheriidae + Limnadiidae) + (Sididae + (Bosminidae + (Chydoridae + Daphniidae)))] + Triopsidae. The newly sequenced O. pulchella was most closely related to the family Daphniidae. The complete mitochondrial genome of O. pulchella also provides valuable molecular information for further analysis of the phylogeny of the Chydoridae and the taxonomic status of the Branchiopoda.


Subject(s)
Cladocera/genetics , Gene Rearrangement , Genome, Mitochondrial , Phylogeny , Animals , Base Sequence , China , Chromosome Mapping , Codon, Terminator/genetics , Gene Order , Open Reading Frames/genetics , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Species Specificity
16.
J Environ Manage ; 305: 114399, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34974215

ABSTRACT

The response of a community to environmental changes is either linear or non-linear, so that they can be investigated approximately by linear or nonlinear models. At community level, redundancy analysis (RDA) and canonical correspondence analysis (CCA), and Mantel test and Generalized Dissimilarity Modelling (GDM) are two pairs of fundamental multivariate approaches. Thus, it is necessary to determine how they are used for a given group of communities or a metacommunity. In the present study, we explored the applications of the two pairs of commonly used multivariate methods for the analysis of tropical phytoplankton communities. Phytoplankton were collected from 60 tropical reservoirs in southern China at two distinct regions and two hydrological seasons. Because of a short environmental gradient, response of phytoplankton communities to the environmental gradients was first explored with linear models: distance-based redundancy analysis (db-RDA) and Mantel test. Then, CCA and GDM were further applied to recognize the nonlinear relationship between phytoplankton community variation and environmental changes, and to detect the significant environmental and/or spatial variables. Our results strongly suggest that the combination of db-RDA and GDM provides a highly effective tool to uncover the linearity and nonlinearity in community responses and the important associated environmental and spatial variables, which were significantly different between flooding and dry seasons.


Subject(s)
Environmental Monitoring , Phytoplankton , China , Seasons
17.
Front Microbiol ; 12: 793544, 2021.
Article in English | MEDLINE | ID: mdl-34899674

ABSTRACT

Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) can produce cylindrospermopsin (CYN) which is of great concern due to its considerable toxicity to human and animals. Its CYN-producing (toxic) and non-CYN-producing (non-toxic) strains co-exist commonly in natural water bodies, while how their relative dominance is regulated has not been addressed. In this study, we combined field investigation with laboratory experiments to assessed the relationship between toxic and non-toxic R. raciborskii abundances under different nutrient levels. The rpoC1- and cyrJ-based qPCR was applied for quantifying total and toxic R. raciborskii abundances, respectively. The field survey showed that toxic R. raciborskii was detected in 97 of 115 reservoirs where its proportion ranged from 0.3% to 39.7% within the R. raciborskii population. Both total and toxic R. raciborskii abundances increased significantly with trophic level of these reservoirs, consistent with our monoculture and co-culture experiments showing in an increase in R. raciborskii growth with increasing nitrogen (N) or phosphorus (P) concentrations. In the monoculture experiments, growth rates of non-toxic and toxic strains from Australia or China were not significantly different under the same culture conditions. On the other hand, in the co-culture experiments, the toxic strains displayed a significantly faster growth than non-toxic strains under nutrient-replete conditions, resulting in an obvious shift toward the dominance by toxic strains from day 3 to the end of the experiments, regardless of the strain originating from Australia or China. The reverse was found under N- or P-limited conditions. Our results indicated that the toxic strains of R. raciborskii have a competitive advantage relative to the non-toxic strains in a more eutrophic world. In parallel to an increase in dominance, both toxic strains grown in the mixed population significantly increased CYN production under nutrient-replete conditions as compared to nutrient-limited conditions, suggesting that CYN may be of significance for ecological advantage of toxic R. raciborskii. These results highlight the importance of nutrient availability in regulating abundances and strain dominance of two genotypes of R. raciborskii. Our findings demonstrated that elevated nutrients would favor the growth of CYN-producing R. raciborskii and CYN production, leading to more blooms with higher toxicity at global scale.

18.
Mitochondrial DNA B Resour ; 6(11): 3100-3102, 2021.
Article in English | MEDLINE | ID: mdl-34621987

ABSTRACT

In this study, we presented the first complete mitochondrial genome of the genus Simocephalus determined by next-generation sequencing. The mitogenome of S. sibiricus is 15,818 bp in length, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 tRNAs, and one putative control region, and has the same gene order with Daphnia. ATG and ATT were used as start codons in 11 PCGs, TTG was used in COX1 and GTG in ATP8. Six PCGs used an incomplete stop codon. Phylogenetic analysis based on 13 PCGs showed that, on genus level, Simocephalus was closely related to Daphnia.

19.
Front Genet ; 12: 711992, 2021.
Article in English | MEDLINE | ID: mdl-34531896

ABSTRACT

Phyllodiaptomus tunguidus (Copepoda: Calanoida) is largely endemic to and widespread in freshwater in southern China, where it inhabits a complex landscape from lowland to highland across an elevation gradient of 2000m. A deep genetic differentiation can be expected between its most distant geographic populations. Here, we sequenced nine mitogenomes from diverse populations. All mitogenomes contained 37 genes, including 13 protein-coding genes (PCG), two rRNA genes, 22 tRNA genes and one control region. Their base composition, genetic distance and tRNA structure indeed revealed a wide differentiation between mitogenomes. Two P. tunguidus from Guangxi near Vietnam differed from the other seven by up to 10.1%. Their tRNA-Arg had a complete clover-leaf structure, whereas that of the others did not contain an entire dihydrouridine arm. The nine mitogenomes also differed in the length of rRNA. NJ, ML, and Bayesian analyses all split them into two clades, viz. the two P. tunguidus from Guangxi (Clade 1), and the other seven (Clade 2). Both the structure and phylogeny of the mitogenomes suggest that P. tunguidus has complex geographic origin, and its populations in Clade 1 have long lived in isolation from those in Clade 2. They currently reach the level of subspecies or cryptic species. An extensive phylogenetic analysis of Copepoda further verified that Diaptomidae is the most recently diverging family in Calanoida and that P. tunguidus is at the evolutionary apex of the family.

20.
Mol Phylogenet Evol ; 164: 107275, 2021 11.
Article in English | MEDLINE | ID: mdl-34339827

ABSTRACT

Cladocera (Crustacea: Branchiopoda) is a key group of invertebrates. Despite a long history of phylogenetic research, relationships within this group remain disputed. We here provide new insights based on 15 new mitochondrial genomes obtained from high-throughput sequencing (HTS) and 40 mitogenomes extracted from published HTS datasets. Together with 25 mitogenomes from GenBank, we generated a matrix of 80 mitogenomes, 44 of them belonging to Cladocera. We also obtained a matrix with 168 nuclear orthologous genes to further assess the phylogenetic result from mitogenomes based on published data and one new HTS data ofLeptodora. Maximum likelihood and Bayesian phylogenetic analyses recovered all Branchiopoda orders as monophyletic and supported a sister-group relationship between Anomopoda and Onychopoda, making the taxon Gymnomera paraphyletic and supporting an independent origin of predatory Haplopoda and Onychopoda. The nuclear phylogeny and topological tests also support Gymnomera as paraphyletic, and the nuclear phylogeny strongly supports a sister-group relationship between Ctenopoda and Haplopoda. We provide a fossil-calibrated time tree, congruent with a Carboniferous origin for Cladocera and a subsequent diversification of the crown group of Anomopoda, Onychopoda, and Ctenopoda, at least in the Triassic. Despite their long evolutionary history, non-Cladoceran Branchiopoda exhibited high mitogenome structural stability. On the other hand, 21 out of 24 gene rearrangements occurred within the relatively younger Cladocera. We found the differential base compositional skewness patterns between Daphnia s.s. and Ctenodaphnia, which might be related to the divergence between these taxa. We also provide evidence to support the recent finding that Spinicaudata possesses mitogenomes with inversed compositional skewness without gene rearrangement. Such a pattern has only been reported in Spinicaudata.


Subject(s)
Cladocera , Genome, Mitochondrial , Animals , Bayes Theorem , Gene Order , Gene Rearrangement , Phylogeny , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...