Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Phytomedicine ; 129: 155708, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733906

ABSTRACT

BACKGROUND: Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE: To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS: The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS: Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION: RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.


Subject(s)
Anthraquinones , Pancreatitis , Rheum , Anthraquinones/pharmacology , Anthraquinones/chemistry , Anthraquinones/therapeutic use , Animals , Rheum/chemistry , Humans , Pancreatitis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Rhizome/chemistry , Pancreas/drug effects , Structure-Activity Relationship , Rats , Disease Models, Animal
2.
Transl Res ; 263: 28-44, 2024 01.
Article in English | MEDLINE | ID: mdl-37619665

ABSTRACT

To reveal dysregulated metabolism hallmark that was associated with a severe acute pancreatitis (SAP) phenotype. In this study, LC-MS/MS-based targeted metabolomics was used to analyze plasma samples from 106 acute pancreatitis (AP) patients (34 mild, 38 moderate, and 34 severe) admitted within 48 hours from abdominal pain onset and 41 healthy controls. Temporal metabolic profiling was performed on days 1, 3, and 7 after admission. A random forest (RF) was performed to significantly determine metabolite differences between SAP and non-SAP (NSAP) groups. Mass spectrometry imaging (MSI) and immunohistochemistry were conducted for the examination of pancreatic metabolite and metabolic enzyme alterations, respectively, on necrosis and paracancerous tissues. Simultaneously determination of serum and pancreatic tissue metabolic alterations using an L-ornithine-induced AP model to discover metabolic commonalities. Twenty-two significant differential metabolites screened by RF were selected to build an accurate model for the prediction of SAP from NSAP (AUC = 0.955). Six of 22 markers were found by MSI with significant alterations in pancreatic lesions, reduced ornithine-related metabolites were also identified. The abnormally expressed arginase2 and ornithine transcarboxylase were further discovered in combination with time-course metabolic profiling in the SAP animal models, the decreased ornithine catabolites were found at a late stage of inflammation, but ornithine-associated metabolic enzymes were activated during the inflammatory process. The plasma metabolome of AP patients is distinctive, which shows promise for early SAP diagnosis. AP aggravation is linked to the activated ornithine metabolic pathway and its inadequate levels of catabolites in in-situ lesion.


Subject(s)
Pancreatitis , Animals , Humans , Pancreatitis/diagnosis , Pancreatitis/metabolism , Acute Disease , Chromatography, Liquid , Tandem Mass Spectrometry , Phenotype , Ornithine , Severity of Illness Index
3.
Metabolites ; 13(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37755273

ABSTRACT

The relationship between the type and intensities of lipids of blood and pancreas and the pathological changes in the pancreas during severe acute pancreatitis (SAP) remains unclear. In our study, we employed a rat model of SAP induced through intraperitoneal ornithine injections. We collected serum and pancreas samples at various time points (0-144 h) for histopathological and biochemical assessments, followed by lipidomic analyses using LC-MS/MS or in situ mass spectrometry imaging (MSI) To discern changes over time or at specific points, we employed time-course and univariate analyses for lipid screening, respectively. Our findings indicated that the peak inflammation in the Orn-SAP model occurred within the 24-30 h timeframe, with evident necrosis emerging from 24 h onwards, followed by regeneration starting at 48 h. Time-course analysis revealed an overall decrease in glycerophospholipids (PEs, PCs, LPEs, LPCs), while CEs exhibited an increase within the pancreas. Univariate analysis unveiled a significant reduction in serum TAGs containing 46-51 carbon atoms at 24 h, and CERs in the pancreas significantly increased at 30 h, compared with 0 h. Moreover, a substantial rise in TAGs containing 56-58 carbon atoms was observed at 144 h, both in serum and pancreas. MSI demonstrated the CERs containing saturated mono-acyl chains of 16 and 18 carbon atoms influenced pancreatic regeneration. Tracing the origin of FFAs hydrolyzed from pancreatic glycerophospholipids and serum TAGs during the early stages of inflammation, as well as FFAs utilized for CEs and CERs synthesis during the repair phase, may yield valuable strategies for diagnosing and managing SAP.

4.
Molecules ; 28(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570873

ABSTRACT

Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.


Subject(s)
Isoflavones , Rats , Animals , Isoflavones/pharmacology , Isoflavones/chemistry , Biological Availability , Flavonoids , Liver Cirrhosis
5.
Phytomedicine ; 113: 154727, 2023 May.
Article in English | MEDLINE | ID: mdl-36913877

ABSTRACT

BACKGROUND: Evidence suggests that Dachengqi and its modified decoctions are effective for treating abdominal pain, multiple organ dysfunction syndrome (MODS) and inflammation in various disease conditions. We performed a meta-analysis to ascertain the effectiveness of a series of chengqi decoctions in patients with severe acute pancreatitis (SAP). METHODS: We searched Pubmed, Embase, Cochrane library, Web of Science, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature, Wanfang database and China Science and Technology Journal Database before August 2022 to identify eligible randomized controlled trials (RCTs). Mortality and MODS were chosen as primary outcomes. Secondary outcomes included time until relief of abdominal pain, APACHE II score, complications, effectiveness, IL-6 and TNF-α levels. The risk ratio (RR) and standardized mean difference (SMD) with a 95% confidence interval (CI) were selected as effect measures. The quality of evidence was independently assessed by two reviewers using Grading of Recommendations Assessment Development and Evaluation (GRADE) system. RESULTS: Twenty-three RCTs (n = 1865) were finally included. The results showed that, compared with routine therapies, chengqi-series decoctions (CQSDs) treatment groups were associated with lower mortality rate (RR: 0.41, 95%CI: 0.32 to 0.53, p = 0.992) and incidence of MODS (RR: 0.48, 95%CI: 0.36 to 0.63, p = 0.885). They also reduced remission time of abdominal pain (SMD: -1.66, 95%CI: -1.98 to -1.35, p = 0.000), complications (RR: 0.52, 95%CI: 0.39 to 0.68, p = 0.716), APACHE II score (SMD: -1.04, 95%CI:-1.55 to -0.54, p = 0.003), IL-6 (SMD: -1.5, 95%CI: -2.16 to -0.85, p = 0.000), TNF-α (SMD: -1.18, 95%CI: -1.71 to -0.65, p = 0.000), and improved curative effectiveness (RR:1.22, 95%CI: 1.14 to 1.31, p = 0.757). The certainty of the evidence for these outcomes was low to moderate. CONCLUSION: CQSDs seem to be effective therapy for SAP patients with notable reductions in mortality, MODS and abdominal pain, with low quality evidence. Large-scale, multi-center RCTs that are more meticulous are advised in order to produce superior evidence.


Subject(s)
Drugs, Chinese Herbal , Pancreatitis , Humans , Tumor Necrosis Factor-alpha , Interleukin-6 , Drugs, Chinese Herbal/therapeutic use , Pancreatitis/drug therapy , Pancreatitis/chemically induced , China
6.
Front Mol Neurosci ; 16: 1331438, 2023.
Article in English | MEDLINE | ID: mdl-38188196

ABSTRACT

Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.

7.
Phytomedicine ; 99: 153996, 2022 May.
Article in English | MEDLINE | ID: mdl-35231826

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disorder of pancreas that lacks effective specific drugs as well as gold standard laboratory tests for diagnosis and severity assessment. Chaiqin chengqi decoction (CQCQD) has been proven to alleviate the severity and mortality of AP, but its underlying mechanisms remain incompletely understood. PURPOSE: To investigate the correlation between metabolic trajectories of the serum and pancreas, the metabolic pathways with respect to the onset and progression of AP, and investigate the effect of CQCQD in modulating the dysregulated pancreatic metabolism of AP. METHODS: Serum and pancreas samples from cerulein-induced AP mice were collected for pathology, biochemical index assessment, LC-MS/MS based metabolomics and functional validation over the course of 1 - 24 h. The temporal trends of pancreatic and serum metabolites in AP were analyzed using Mfuzz clustering algorithm, and their associations were revealed by Pearson correlation analysis. The metabolic trajectories and pathways across multi-timepoints were analyzed by univariate and multivariate statistical analyses, and the AP-related metabolic pathways were further screened by metabolite correlation and network interaction analyses. Finally, the changes in metabolite levels and metabolic trajectory after CQCQD therapy were identified, and the altered expression of related metabolic enzymes was verified by RT-qPCR, western blotting, and immunohistochemistry. RESULTS: Amino acid metabolism was significantly altered in the pancreas and serum of AP, but with different trends. The unsynchronized "open" and "closed" metabolic trajectories in pancreas and serumrevealed that metabolic processes occur earlier in peripheral rather than local tissue, with the most obvious changes occuring at 12 h in the pancreas which were also consistent with the inflammation score results. Several amino acid intermediates showed strong positive correlation between serum and pancreas, and therein serum cystathionine was positively correlated to 33 pancreatic metabolites. In particular, the correlations between the levels of pancreatic cystathionine and methionine, serine, and glutathione (GSH) emphasized the importance of trans-sulfuration to GSH metabolism for AP progression. CQCQD treatment reversed the metabolic trajectory of the pancreas, and also restored the levels of cystathionine and glutathione synthase. CONCLUSION: Our results have defined a unique time-course metabolic trajectory for AP progression in both the serum and pancreas; it has also revealed a key role of CQCQD in reversing AP-associated metabolic alterations, thus providing new metabolic targets for the treatment and prognosis of AP.

8.
J Ethnopharmacol ; 274: 114029, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33731310

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chaiqin chengqi decoction (CQCQD) and its derivatives have been widely used in China for the early management of patients with acute pancreatitis (AP). Numerous studies demonstrate the anti-inflammatory and anti-oxidative effects of CQCQD and derivatives, but whether these effects can be attributed to suppressing neurogenic inflammation, has never been studied. AIM OF THE STUDY: To investigate the effects of CQCQD on substance P (SP)-neurokinin 1 receptor (NK1R) based neurogenic inflammation in an experimental AP model. MATERIAL AND METHODS: For AP patients on admission, pain score was accessed by visual analog scale (VAS); the levels of serum SP and expressions of pancreatic SP and NK1R were also determined. For in vivo study, mice received 7 intraperitoneal injections of cerulein (50 µg/kg) at hourly intervals to induce AP, whilst controls received normal saline injections. In the treatment groups, CQCQD (10 g/kg, 200 µl) was intragastrically given at the third, fifth, and seventh of the cerulein injection or the NK1R antagonist CP96345 (5 mg/kg) was intraperitoneally injected 30 min before the first cerulein administration. The von Frey test was performed to evaluate pain behavior. Animals were sacrificed at 12 h from the first cerulein/saline injection for severity assessment. Pharmacology network analysis was used to identify active ingredients of CQCQD for AP and pain. In vitro, freshly isolated pancreatic acinar cells were pre-treated with CQCQD (5 mg/ml), CP96345 (1 µM), or selected active compounds of CQCQD (12.5, 25, and 50 µM) for 30 min, followed by SP incubation for another 30 min. RESULTS: The VAS score as well as the levels of serum SP and expressions of pancreatic SP-NK1R were up-regulated in moderately severe and severe patients compared with those with mild disease. CQCQD, but not CP96345, consistently and significantly ameliorated pain, pancreatic necrosis, and systemic inflammation in cerulein-induced AP as well as inhibited NK1R internalization of pancreatic acinar cells. These effects of CQCQD were associated with reduction of pancreatic SP-NK1R and neuron activity in pancreas, dorsal root ganglia, and spinal cord. Baicalin, emodin, and magnolol, the top 3 active components of CQCQD identified via pharmacology network analysis, suppressed NK1R internalization and NF-κB signal pathway activation in isolated pancreatic acinar cells. CONCLUSIONS: CQCQD ameliorated cerulein-induced AP and its associated pain via inhibiting neuron activation-mediated pancreatic acinar cell SP-NK1R signaling pathways and its active compounds baicalin, emodin, and magnolol contributed to this effect.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Pain/drug therapy , Pancreatitis/drug therapy , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Biphenyl Compounds/analysis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Ceruletide , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Emodin/analysis , Emodin/pharmacology , Emodin/therapeutic use , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/therapeutic use , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Humans , Lignans/analysis , Lignans/pharmacology , Lignans/therapeutic use , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Pain/metabolism , Pain/pathology , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Receptors, Neurokinin-1/genetics , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Substance P/genetics
9.
Phytomedicine ; 85: 153525, 2021 May.
Article in English | MEDLINE | ID: mdl-33740732

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that is associated with substantial morbidity and mortality. Chaiqin chengqi decoction (CQCQD) has been proven clinically to be an effective treatment for AP for decades in West China Hospital. Quality control for CQCQD containing many hundreds of characteristic phytochemicals poses a challenge for developing robust quality assessment metrics. PURPOSE: To evaluate quality consistency of CQCQD with a multi-strategy based analytical method, identify potential quality-markers (Q-markers) based on drug properties and effect characteristics, and endeavor to establish CQCQD as a globally-accepted medicine. METHODS: A typical analysis of constitutive medicinal plant materials was performed following the Chinese Pharmacopoeia. The extraction process was optimized through an orthogonal array (L9(34)) to evaluate three levels of liquid to solid ratio, soaking time, duration of extraction, and the number of extractions. An ultra-high-performance liquid chromatography (UHPLC) fingerprinting combined with absolute quantitation of multi chemical marker compounds, coupled with similarity, hierarchical clustering analysis (HCA), and principal component analyses (PCA) were performed to evaluate 10 batches of CQCQD. On the basis of systematic analysis of fundamental features of CQCQD in treating AP, the potential Q-marker screen was proposed through detection of quality transfer and efficacy for chemical markers. UHPLC coupled with quadrupole orbitrap mass spectrometry were used to determine compounds in medicinal materials, decoctions and plasma. Network pharmacology and taurolithocholic acid 3-sulfate induced pancreatic acinar cell death were used to evaluate the correlation between chemical markers and anti-pancreatitis activity. A cerulein induced AP murine model was used to validate quality assessed CQCQD batches at clinically-equivalent dose. The effective content of chemical markers was predicted using linear regression analysis on quantitative information between validated batches and the other batches. RESULTS: The chemical markers and other physical and chemical indices in the original materials met Chinese Pharmacopoeia standards. A total of 22 co-existing fingerprint peaks were selected and the similarity varied between 0.946 and 0.990. Batch D10 possessed the highest similarity index. HCA classified the 10 batches into 2 main groups: 7 batches represented by D10 and 3 batches represented by D1. During the initial Q-marker screen stage, 22 compounds were detected in both plant materials and decoctions, while 13 compounds were identified in plasma. Network pharmacology predicted the potential targets and pathway of AP related to the 22 compounds. All 10 batches showed reduced necrosis below 60% with the best effect achieved by D10 (~40%). The spectrum-efficacy relationship analyzed by Pearson correlation analysis indicated that emodin, rhein, aloe emodin, geniposide, hesperridin, chrysin, syringin, synephrine, geniposidic acid, magnolol, physcion, sinensetin, and baicalein showed positive correlation with pancreatic acinar cell death protection. Similar to the in vitro evaluation, batch D10 significantly reduced total histopathological scores and biochemical severity indices at a clinically-equivalent dose but batch D1 did not. The content of naringin, narirutin and baicalin in batches D1, D5 and D9 consistently exceeds the upper limit of the predicted value. Eight markers whose lower limit is predicted to be close to 0 contributed less to the material basis for AP protection. CONCLUSION: Despite qualified materials used for CQCQD preparation, the clinical effect depends on appropriate content range of Q-markers. Emodin, rhein, aloe emodin, magnolol, hesperidin, synephrine, baicalein, and geniposide are considered as vital Q-markers in the primary screen. This study proposed a feasible platform for producing highly consistent batches of CQCQD in future study.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Pancreatitis/drug therapy , Quality Control , Acinar Cells/drug effects , Acute Disease , Animals , Ceruletide , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Mice , Necrosis/pathology , Pancreas/drug effects , Pancreatitis/chemically induced
10.
Front Med (Lausanne) ; 8: 782151, 2021.
Article in English | MEDLINE | ID: mdl-34977084

ABSTRACT

Background: Pain management is an important priority in the treatment of acute pancreatitis (AP). Current evidence and guideline recommendations are inconsistent on the most effective analgesic protocol. This systematic review and meta-analysis of randomised controlled trials (RCTs) aimed to compare the safety and efficacy of analgesics for pain relief in AP. Methods: A literature search was performed to identify all RCTs assessing analgesics in patients with AP. The primary outcome was the number of participants who needed rescue analgesia. Study quality was assessed using Jadad score. Pooled odds ratios (ORs) or weighted mean differences (WMDs) with 95% confidence intervals (CI) were analysed using a random-effects model. Results: Twelve studies comprising 699 patients with AP (83% mild AP) were analysed. The tested analgesics significantly decreased the need for rescue analgesia (3 studies, OR.36, 95% CI 0.21 to 0.60) vs. placebo or conventional treatment. The analgesics also improved the pain score [Visual Analogue Scale (Δ-VAS)] at 24 h (WMD 18.46, 0.84 to 36.07) and by the 3rd to 7th days (WMD 11.57, 0.87 to 22.28). Opioids vs. non-opioids were associated with a decrease in the need for rescue analgesia (6 studies, OR 0.25, 95% CI 0.07 to 0.86, p = 0.03) but without significance in pain score. In subgroup analyses, opioids were similar to non-steroidal anti-inflammatory drugs (NSAIDs) regarding the primary outcome (4 studies, OR 0.56, 95% CI 0.24 to 1.32, p = 0.18). There were no significant differences in other clinical outcomes and rate of adverse events. Other studies, comparing epidural anaesthesia vs. patient-controlled analgesia and opioid (buprenorphine) vs. opioid (pethidine) did not show significant difference in primary outcome. Study quality issues significantly contributed to overall study heterogeneity. Conclusions: NSAIDs and opioids are equally effective in decreasing the need for rescue analgesia in patients with mild AP. The relative paucity of trials and high-quality data in this setting is notable and the optimal analgesic strategy for patients with moderately severe and severe AP still requires to be determined.

11.
Phytomedicine ; 79: 153328, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007730

ABSTRACT

BACKGROUND: Chaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects. PURPOSE: Toll-like receptor 4 (TLR4) and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pro-inflammatory signaling pathways, play a central role in AP in determining the extent of pancreatic injury and systemic inflammation. In this study, we screened the bioactive ingredients using a pharmacological sub-network analysis based on the TLR4/NLRP3 signaling pathways followed by experimental validation. METHODS: The main CQCQD bioactive compounds were identified by UPLC-QTOF/MS. The TLR4/NLRP3 targets in AP for CQCQD active ingredients were confirmed through a pharmacological sub-network analysis. Mice received 7 intraperitoneal injections of cerulein (50 µg/kg; hourly) to induce AP (CER-AP), while oral gavage of CQCQD (5, 10, 15 and 20 g/kg; 3 doses, 2 hourly) was commenced at the 3rd injection of cerulein. Histopathology and biochemical indices were used for assessing AP severity, while polymerase chain reaction, Western blot and immunohistochemistry analyses were used to study the mechanisms. Identified active CQCQD compounds were further validated in freshly isolated mouse pancreatic acinar cells and cultured RAW264.7 macrophages. RESULTS: The main compounds from CQCQD belonged to flavonoids, iridoids, phenols, lignans, anthraquinones and corresponding glycosides. The sub-network analysis revealed that emodin, rhein, baicalin and chrysin were the compounds most relevant for directly regulating the TLR4/NLRP3-related proteins TLR4, RelA, NF-κB and TNF-α. In vivo, CQCQD attenuated the pancreatic injury and systemic inflammation of CER-AP and was associated with reduced expression of TLR4/NLRP3-related mRNAs and proteins. Emodin, rhein, baicalin and chrysin significantly diminished pancreatic acinar cell necrosis with varied effects on suppressing the expression of TLR4/NLRP3-related mRNAs. Emodin, rhein and chrysin also decreased nitric oxide production in macrophages and their combination had synergistic effects on alleviating cell death as well as expression of TLR4/NLRP3-related proteins. CONCLUSIONS: CQCQD attenuated the severity of AP at least in part by inhibiting the TLR4/NLRP3 pro-inflammatory pathways. Its active ingredients, emodin, baicalin, rhein and chrysin contributed to these beneficial effects.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pancreatitis/drug therapy , Acinar Cells/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ceruletide/toxicity , Emodin/pharmacology , Flavonoids/pharmacology , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , RAW 264.7 Cells , Toll-Like Receptor 3/antagonists & inhibitors
12.
J Ethnopharmacol ; 257: 112861, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32315735

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dachengqi decoction (DCQD) belongs to a family of purgative herbal formulas widely used in China for the treatment of acute pancreatitis (AP). AP is a prevalent digestive disease currently without an effective pharmacological intervention. Formula granules have become the preferred method for delivery of herbal formulation in China given its benefit of potency retention, dosing precision and ease of use. The efficacy of DCQD formula granules (DFGs) in experimental AP models has not been investigated. AIM OF THE STUDY: To analyse and compare the differences in chemical composition of DFGs, with their aqueous extraction (AE) and chloroform extraction (CE) derivatives. To assess their efficacy on severity and targeted pancreatic pro-inflammatory signalling pathways in freshly isolated acinar cells and two models of experimental AP. MATERIAL AND METHODS: UPLC-Q-TOF-MS was used to analyse chemical components of DFGs and their extractions. Freshly isolated mouse pancreatic acinar cells were treated with taurolithocholic acid 3-sulphate disodium salt (TLCS, 500 µM) with or without DFGs, AE and CE. Apoptotic and necrotic cell death pathway activation was measured by caspase 3/7 (10 µl/mL) and propidium iodide (PI, 1 µM), respectively, using a fluorescent plate reader. Necrotic acinar cells were also counted by epifluorescence microscopy. Mice received either 7 intraperitoneal injections of caerulein (50 µg/kg) at hourly intervals or retrograde infusion of TLCS (3 mM, 50 µl) to induce AP (CER-AP and TLCS-AP, respectively). In CER-AP, mice received oral gavage of DFGs (2.1, 4.2 and 5.2 g/kg), AE (0.6, 1.2, and 2.4 g/kg) and CE (4, 9 and 17 mg/kg), or matched DFGs (1.8 g/kg) and AE (1 g/kg) for 3 times at 2-hourly intervals, or a single intraperitoneal injection of DCQD-related monomers rhein (20 mg/kg), narigeinine (25 mg/kg), and honokiol (5 mg/kg) begun at the 3rd injection of caerulein. In TLCS-AP, DFGs (4.2 g/kg) were given orally at 1, 3 and 5 h post-surgery. Disease severity and pancreatic pro-inflammatory markers were determined. RESULTS: The main effective anthraquinones and their glycosides, flavonoids and their glycosides, polyphenols and lignans were found in the DFGs. A higher proportion of polar components including glycosides attached to anthraquinones, phenols and flavonoids was found in AE. Conversely, lower polar components containing methoxy substituted flavonoids and anthraquinones were more abundant in CE. DFGs were given at 4.2 g/kg, a consistent reduction in the pancreatic histopathology score and severity indices was observed in both CER-AP and TLCS-AP. In vitro, AE significantly reduced both apoptotic and necrotic cell death pathway activation, while CE increased TLCS-induced acinar cell necrosis. In vivo, AE at dose of 1.2 g/kg consistently reduced pancreatic histopathological scores and myeloperoxidase in the CER-AP that were associated with suppressed expression of pro-inflammatory meditator mRNAs and proteins. CE increased lung myeloperoxidase and failed to protect against CER-AP in all dosages. AE was demonstrated to be more effective than DFGs in reducing pancreatic histopathological scores and myeloperoxidase. CONCLUSIONS: AE from DFGs alleviated the severity of mouse AP models via an inhibition of pancreatic pro-inflammatory signalling pathways. Efficacy of AE on experimental AP was more potent than its original DFGs and DCQD monomers.


Subject(s)
Acinar Cells/drug effects , Anti-Inflammatory Agents/pharmacology , Inflammation Mediators , Pancreas, Exocrine/drug effects , Pancreatitis/prevention & control , Plant Extracts/pharmacology , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Apoptosis/drug effects , Chloroform/chemistry , Disease Models, Animal , Male , Mice, Inbred C57BL , Necrosis , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/pathology , Pancreatitis/metabolism , Pancreatitis/pathology , Signal Transduction , Solvents/chemistry , Water/chemistry
13.
J Med Chem ; 63(7): 3665-3677, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32162512

ABSTRACT

TWIK-related K+ (TREK) channels are potential analgesic targets. However, selective activators for TREK with both defined action mechanism and analgesic ability for chronic pain have been lacking. Here, we report (1S,3R)-3-((4-(6-methylbenzo[d]thiazol-2-yl)phenyl)carbamoyl)cyclopentane-1-carboxylic acid (C3001a), a selective activator for TREK, against other two-pore domain K+ (K2P) channels. C3001a binds to the cryptic binding site formed by P1 and TM4 in TREK-1, as suggested by computational modeling and experimental analysis. Furthermore, we identify the carboxyl group of C3001a as a structural determinant for binding to TREK-1/2 and the key residue that defines the subtype selectivity of C3001a. C3001a targets TREK channels in the peripheral nervous system to reduce the excitability of nociceptive neurons. In neuropathic pain, C3001a alleviated spontaneous pain and cold hyperalgesia. In a mouse model of acute pancreatitis, C3001a alleviated mechanical allodynia and inflammation. Together, C3001a represents a lead compound which could advance the rational design of peripherally acting analgesics targeting K2P channels without opioid-like adverse effects.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Benzothiazoles/therapeutic use , Neurogenic Inflammation/drug therapy , Pain/drug therapy , Potassium Channels, Tandem Pore Domain/agonists , Analgesics/metabolism , Analgesics/pharmacokinetics , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Benzothiazoles/metabolism , Benzothiazoles/pharmacokinetics , Binding Sites , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Structure , Pancreatitis/drug therapy , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Protein Binding , Rats, Sprague-Dawley , Structure-Activity Relationship
14.
Pancreatology ; 19(2): 209-216, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30611702

ABSTRACT

Ethyl pyruvate (EP) has been shown to improve outcomes from multiple organ dysfunction syndrome (MODS) in experimental animal models of critical illness. This review aimed to summarise in vitro and in vivo effects of EP analogs on acute pancreatitis (AP) with the objective of proposing medicinal chemistry modifications of EP for future research. In vitro studies showed that both sodium pyruvate and EP significantly reduced pancreatic acinar necrotic cell death pathway activation induced by multiple pancreatic toxins. In vivo studies using different murine AP models showed that EP (usually at a dose of 40 mg/kg every 6 h) consistently reduced pain, markers of pancreatic injury, systemic inflammation and MODS. There was also a significant increase in survival rate, even when EP was administered 12 h after disease induction (compared with untreated groups or those treated with Ringer's lactate solution). Experimental studies suggest that EP and analogs are promising drug candidates for treating AP. EP or analogs can undergo medicinal chemistry modifications to improve its stability and deliverability. EP or analogs could be evaluated as a supplement to intravenous fluid therapy in AP.


Subject(s)
Pancreatitis/drug therapy , Pyruvates/therapeutic use , Animals , Biomarkers , Humans , Inflammation , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology
15.
BMC Complement Altern Med ; 18(1): 309, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30477490

ABSTRACT

BACKGROUNDS: Although the physical and mental enhancement effect of essential oils have been proved, the beneficial effect of essential oil in central fatigue remains unclear. In this study, we extracted essential oils from nine aromatic plants to make a compound essential oil, and detected the therapeutic effect of central fatigue by daily aerial diffusion. METHODS: Thirty-three rats were randomly and equally divided into control group, chronic sleep deprivation group, and compound essential oil inhalation group. Central fatigue was generated by chronic sleep deprivation. RESULTS: After 21-day various interferences, it is found that the sleep deprivation rats showed an evident decrease in physical endurance, negative emotion, and cognitive dysfunction compared with the control group, and the group that treated with the compound essential oil behaved significantly better than central fatigue group. CONCLUSION: We concluded that this formula of essential oils could alleviate central fatigue on rats, and our study provides a new direction of application of aromatic therapy, which could be expanded to insomnia, depression and other healthy issue in the further research.


Subject(s)
Fatigue/drug therapy , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Administration, Inhalation , Animals , Fatigue/physiopathology , Humans , Male , Oils, Volatile/chemistry , Plant Oils/chemistry , Rats , Rats, Wistar , Sleep , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/physiopathology
16.
J Vis Exp ; (138)2018 08 14.
Article in English | MEDLINE | ID: mdl-30175994

ABSTRACT

In this article, we introduced a rat model of central fatigue using the modified multiple platform method (MMPM). The Multiple Platform box was designed as a water tank with narrow platforms on the bottom. The model rats were put into the tank and stood on the platforms for 14 h (18:00 - 8:00) per day for a consecutive 21 days, with a blank control group set for contrast. At the end of modeling, rats in the model group showed an obvious fatigued appearance. To assess the model, we performed several behavioral tests, including the open field test (OFT), the elevated plus maze (EPM) test, and the exhaustive swimming (ES) test. The results showed that anxiety, spatial cognition impairment, poor muscle performance, and declined voluntary activity presented in model rats confirm the diagnosis of central fatigue. Changes of the central neurotransmitters also verified the result. In conclusion, the model successfully simulated central fatigue, and future study with the model may help reveal the pathological mechanism of the disease.


Subject(s)
Fatigue/pathology , Maze Learning/physiology , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
17.
Article in English | MEDLINE | ID: mdl-30151021

ABSTRACT

The traditional Chinese medicine (TCM) decoction Si-Ni-San (SNS) has been utilised for millennia to improve physiological coordination of the functions of the liver and spleen, which are regarded as the main pathological organs of central fatigue in TCM. This study evaluates the effect of a modified SNS (MSNS) formula on central fatigue in rats and explores molecular changes associated with hippocampal mitochondrial biogenesis. Central fatigue was induced through a 21-day sleep deprivation protocol. We assessed MSNS's effects on behaviour, blood and liver biomarkers, and mitochondrial ultrastructure. We found that MSNS could reverse various signs of central fatigue such as its effects on hippocampal gene and protein expression levels of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and nuclear respiratory factor 1 (NRF1). We also observed evidence of MSNS decreasing central fatigue, such as decreasing creatine kinase activity, decreasing levels of malondialdehyde and blood urea nitrogen, increasing lactate dehydrogenase and superoxide dismutase activities, increasing mitochondrial DNA copy number, and reversing mitochondrial ultrastructure changes. These findings suggest that MSNS can ameliorate central fatigue and that its molecular mechanism involves mitochondrial biogenesis enhancement mediated by hippocampal SIRT1, PGC-1α, and NRF1.

18.
Front Physiol ; 9: 1922, 2018.
Article in English | MEDLINE | ID: mdl-30697165

ABSTRACT

Pancreatic acinar cells require high rates of amino acid uptake for digestive enzyme synthesis, but excessive concentrations can trigger acute pancreatitis (AP) by mechanisms that are not well understood. We have used three basic natural amino acids L-arginine, L-ornithine, and L-histidine to determine mechanisms of amino acid-induced pancreatic injury and whether these are common to all three amino acids. Caffeine markedly inhibited necrotic cell death pathway activation in isolated pancreatic acinar cells induced by L-arginine, but not L-ornithine, whereas caffeine accelerated L-histidine-induced cell death. Both necroptosis inhibitors of RIPK1 and RIPK3 and a necroptosis activator/apoptosis inhibitor z-VAD increased cell death caused by L-histidine, but not L-arginine or L-ornithine. Cyclophilin D knock-out (Ppif-/-) significantly attenuated cell death induced by L-histidine, but not L-arginine, or L-ornithine. Allosteric modulators of calcium-sensing receptor (CaSR) and G-protein coupled receptor class C group 6 member A (GPRC6A) had inhibitory effects on cell death induced by L-arginine but not L-ornithine or L-histidine. We developed a novel amino acid-induced AP murine model with high doses of L-histidine and confirmed AP severity was significantly reduced in Ppif-/- vs. wild type mice. In L-arginine-induced AP neither Ppif-/-, caffeine, or allosteric modulators of CaSR or GPRC6A reduced pancreatic damage, even though CaSR inhibition with NPS-2143 significantly reduced pancreatic and systemic injury in caerulein-induced AP. These findings demonstrate marked differences in the mechanisms of pancreatic injury induced by different basic amino acids and suggest the lack of effect of treatments on L-arginine-induced AP may be due to conversion to L-ornithine in the urea cycle.

19.
PLoS One ; 12(5): e0176850, 2017.
Article in English | MEDLINE | ID: mdl-28493899

ABSTRACT

The modified multiple platform method (MMPM) is a classical sleep deprivation model. It has been widely used in behavioral and brain research, due to its effects on physical and mental functions. However, different MMPM protocols can promote distinct effects in rats. Although the MMPM has been proved to induce central fatigue, the effects of different durations of subjection to the MMPM remain undetermined. This study aims to investigate the changes in behavior, N-Methyl-d-Aspartate receptor 1 (NR1) and 2A (NR2A), as well as the ultrastructural alteration in the hippocampus after different MMPM modelling, to compare the central fatigue effect induced by dynamic MMPM. Rats were randomly divided into four groups: 5-, 14- and 21- day MMPM groups, and a control group. Each MMPM group underwent a 14-hour daily MMPM modelling. After each training session, open field and elevated plus maze tests were performed. Corticosterone levels were detected by ELISA, and the hippocampal NR1 and NR2A were measured by RT-PCR and Western blot analysis. In addition, ultrastructural changes in the hippocampal cornu ammonis 1(CA1) region were determined by transmission electron microscopy (TEM). The findings showed that the 5 and 14 days of MMPM induced a high-stress state, while the 21 days of MMPM induced anxiety and degenerative alteration in the hippocampal morphology. Additionally, hippocampal NR1 and NR2A gene expression decreased in all MMPM groups, whereas the protein expression only decreased in the 21-day group. Overall, different durations of MMPM caused distinct behavioral and brain changes, and the 21 days of MMPM could induce central fatigue.


Subject(s)
Behavior, Animal , Brain/pathology , Fatigue/complications , Sleep Deprivation/complications , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/ultrastructure , Corticosterone/blood , Disease Models, Animal , Fatigue/blood , Gene Expression Regulation , Male , Maze Learning , Mitochondria/metabolism , Mitochondria/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Sleep Deprivation/blood , Synapses/metabolism , Synapses/ultrastructure
20.
Chin J Integr Med ; 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26597287

ABSTRACT

OBJECTIVE: To investigate the mechanism of Sini Powder () decoction (SND) in the treatment of insomnia. METHODS: The rats were randomly divided into four groups: control, model, SND-treated, and Estazolamtreated groups (n=15 in each group). Sleep deprivation (SD) rat model was established using the modifified multiple platform method for 14 h per day for 14 days, and the behavior of the rats were observed. Na-K-Cl-cotransporter (NKCC1) and K+/Cl- cotransporter (KCC2) in the hippocampus were tested by immunohistochemistry, real-time polymerase chain reaction, and western blot. RESULTS: SD rats displayed anxiety-like behavior, which was alleviated by SND. The protein expressions of NKCC1 and KCC2 in the hippocampus were signifificantly decreased in SD rats compared with those in control rats (P<0.05); these proteins were signifificantly increased by SND (P<0.05). The mRNA expression of KCC2 was signifificantly decreased in SD rats (0.62±0.35 vs. 2.29±0.56; P=0.044), while SND showed a tendency to increase the mRNA of KCC2 in SD rats (P>0.05). By contrast, the mRNA expression of NKCC1 was signifificantly increased in the hippocampus of SD rats (6.58±1.54 vs. 2.82±0.32; P=0.011), while SND decreased the mRNA expression of NKCC1 (6.58±1.54 vs. 2.79±0.81; P=0.016). CONCLUSIONS: Chinese medicine SND could alleviate mood disorder of SD rats by regulating cation-chloride cotransporters, such as NKCC1 and KCC2. These fifindings would have major implications in the mechanism of SND to relieve insomnia.

SELECTION OF CITATIONS
SEARCH DETAIL
...