Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37699387

ABSTRACT

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Male , Female , Animals , Mice , NF-kappa B/metabolism , Insulin Resistance/genetics , Caspase 8/genetics , Caspase 8/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Knockout , Adipocytes/metabolism , Obesity/genetics , Obesity/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Glucose/metabolism , Apoptosis/genetics
2.
Mol Metab ; 66: 101594, 2022 12.
Article in English | MEDLINE | ID: mdl-36165813

ABSTRACT

OBJECTIVE: Adipose tissue is a very dynamic metabolic organ that plays an essential role in regulating whole-body glucose homeostasis. Dysfunctional adipose tissue hypertrophy with obesity is associated with fibrosis and type 2 diabetes. Yes-associated protein 1 (YAP) is a transcription cofactor important in the Hippo signaling pathway. However, the role of YAP in adipose tissue and glucose homeostasis is unknown. METHODS: To study the role of YAP with metabolic stress, we assessed how increased weight and insulin resistance impact YAP in humans and mouse models. To further investigate the in vivo role of YAP specifically in adipose tissue and glucose homeostasis, we developed adipose tissue-specific YAP knockout mice and placed them on either chow or high fat diet (HFD) for 12-14 weeks. To further study the direct role of YAP in adipocytes we used 3T3-L1 cells. RESULTS: We found that YAP protein levels increase in adipose tissue from humans with type 2 diabetes and mouse models of diet-induced obesity and insulin resistance. This suggests that YAP signaling may contribute to adipocyte dysfunction and insulin resistance under metabolic stress conditions. On an HFD, adipose tissue YAP knockout mice had improved glucose tolerance compared to littermate controls. Perigonadal fat pad weight was also decreased in knockout animals, with smaller adipocyte size. Adipose tissue fibrosis and gene expression associated with fibrosis was decreased in vivo and in vitro in 3T3-L1 cells treated with a YAP inhibitor or siRNA. CONCLUSIONS: We show that YAP is increased in adipose tissue with weight gain and insulin resistance. Disruption of YAP in adipocytes prevents glucose intolerance and adipose tissue fibrosis, suggesting that YAP plays an important role in regulating adipose tissue and glucose homeostasis with metabolic stress.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Mice , Animals , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Weight Gain , Homeostasis , Fibrosis , Mice, Knockout , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...