Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 22(1): 154, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609982

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS: RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS: PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS: PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.


Subject(s)
Apoptosis , Colorectal Neoplasms , Animals , Mice , Humans , CD8-Positive T-Lymphocytes , Disease Models, Animal , Gene Expression , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Guanine Nucleotide Exchange Factors
2.
Cell Mol Life Sci ; 81(1): 57, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279052

ABSTRACT

The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.


Subject(s)
Axin Signaling Complex , beta Catenin , Humans , Axin Signaling Complex/genetics , Axin Protein/genetics , Axin Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Phase Separation , Mutation/genetics , Wnt Signaling Pathway/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism
3.
Pathol Res Pract ; 251: 154837, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806170

ABSTRACT

Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Neoplasm Recurrence, Local
4.
Cell Death Dis ; 14(9): 581, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658049

ABSTRACT

Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an RNA-binding protein, is associated with tumorigenesis and progression. However, the exact molecular mechanisms of IGF2BP3 in colorectal cancer (CRC) oncogenesis, progression, and drug resistance remain unclear. This study found that IGF2BP3 was upregulated in CRC tissues. Clinically, the elevated IGF2BP3 level is predictive of a poor prognosis. Functionally, IGF2BP3 enhances CRC tumorigenesis and progression both in vitro and in vivo. Mechanistically, IGF2BP3 promotes epidermal growth factor receptor (EGFR) mRNA stability and translation and further activates the EGFR pathway by serving as a reader in an N6-methyladenosine (m6A)-dependent manner by cooperating with METTL14. Furthermore, IGF2BP3 increases the drug resistance of CRC cells to the EGFR-targeted antibody cetuximab. Taken together, our results demonstrated that IGF2BP3 was a functional and clinical oncogene of CRC. Targeting IGF2BP3 and m6A modification may therefore offer rational therapeutic targets for patients with CRC.


Subject(s)
Colorectal Neoplasms , ErbB Receptors , Humans , Antibodies , Carcinogenesis , Cell Transformation, Neoplastic , Cetuximab , RNA, Messenger
5.
Cancer Lett ; 553: 215995, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36336148

ABSTRACT

RNA editing is among the most common RNA level modifications for generating amino acid changes. We identified a COPA A-to-I RNA editing event in CRC metastasis. Our results showed that the COPA A-to-I RNA editing rate was significantly increased in metastatic CRC tissues and was closely associated with aggressive tumors in the T and N stages. The COPA I164V protein damaged the Golgi-ER reverse transport function, induced ER stress, promoted the translocation of the transcription factors ATF6, XBP1 and ATF4 into the nucleus, and activated the expression of MALAT1, MET, ZEB1, and lead to CRC cell invasion and metastasis. Moreover, the COPA A-to-I RNA editing rate was positively correlated with the immune infiltration score. Collectively, the COPA I164V protein hijacked ER stress to promote the metastasis of CRC, and the COPA A-to-I RNA editing rate may be a potential predictor for patient response to immune checkpoint inhibitor (ICIs) treatment.


Subject(s)
Colorectal Neoplasms , Endoplasmic Reticulum Stress , Humans , RNA Editing , Golgi Apparatus/metabolism , Colorectal Neoplasms/pathology , RNA/metabolism
7.
Exp Cell Res ; 417(2): 113209, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35605649

ABSTRACT

The bladder cancer-associated protein (BLCAP) gene is a tumor-suppressor gene as its encoded protein can inhibit cell proliferation by stimulating apoptosis in many malignant tumors. It is also a novel site of adenosine-to-inosine (A-to-I) RNA editing by ADAR (adenosine deaminase acting on RNA). In this study, we found by exome and transcriptome sequencing that there was an abnormal RNA editing event of the BLCAP gene in colorectal cancer (CRC) tissues compared to adjacent normal tissues. The editing of BLCAP transcripts promoted the degradation of BLCAP by ubiquitination, so BLCAP could not maintain its function as a tumor suppressor gene in CRC. Moreover, our further studies revealed that BLCAP could interact with Rb1 and inhibit its phosphorylation, while the loss of repressive effect due to reduced BLCAP protein levels caused by A-to-I RNA editing facilitates the transition from G1 to S phase of the cell cycle, leading to increased cell proliferation and reduced apoptosis. Thus, A-to-I RNA editing events tend to play an essential role in CRC carcinogenesis.


Subject(s)
Colorectal Neoplasms , RNA Editing , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Humans , Neoplasm Proteins/genetics , RNA/metabolism , RNA Editing/genetics , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Front Oncol ; 10: 1066, 2020.
Article in English | MEDLINE | ID: mdl-32793471

ABSTRACT

Vascular cell adhesion molecular 1 (VCAM1), an important member of the immunoglobulin superfamily, is related to the development of malignant tumors, such as breast cancer, melanoma, and renal clear cell carcinoma. However, the molecular role and mechanism of VCAM1 in the regulation of the progression of colorectal cancer (CRC) has rarely been studied. The results of IHC and RT-PCR analyses proved that VCAM1 was upregulated in human CRC tissues compared with matched adjacent normal intestinal epithelial tissues. Moreover, analysis of data from the TCGA and Gene Expression Omnibus (GEO) databases revealed that a higher level of VCAM1 was strongly correlated with poor differentiation, metastasis, and short survival in CRC patients. Furthermore, VCAM1 significantly influenced the invasion and metastasis of CRC cells in vitro and in vivo and activated the EMT program, by which cancer cells adhere to the endothelium and cross the vessel wall by forming pseudopodia and invadopodia. The current findings demonstrate that VCAM1 promotes tumor progression in CRC.

9.
Cell Death Dis ; 11(7): 571, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709922

ABSTRACT

Oxysterol-binding protein like protein 3 (OSBPL3) has been shown involving in the development of several human cancers. However, the relationship between OSBPL3 and colorectal cancer (CRC), particularly the role of OSBPL3 in the proliferation, invasion and metastasis of CRC remains unclear. In this study, we investigated the role of OSBPL3 in CRC and found that its expression was significantly higher in CRC tissues than that in normal tissues. In addition, high expression of OSBPL3 was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of OSBPL3 promoted the proliferation, invasion and metastasis of CRC in vitro and in vivo models. Moreover, we revealed that OSBPL3 promoted CRC progression through activation of RAS signaling pathway. Furthermore, we demonstrated that hypoxia induced factor 1 (HIF-1A) can regulate the expression of OSBPL3 via binding to the hypoxia response element (HRE) in the promoter of OSBPL3. In summary, Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. This novel mechanism provides a comprehensive understanding of both OSBPL3 and the RAS signaling pathway in the progression of CRC and indicates that the HIF1A-OSBPL3-RAS axis is a potential target for early therapeutic intervention in CRC progression.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Fatty Acid-Binding Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Signal Transduction , Up-Regulation/genetics , ras Proteins/metabolism , Animals , Base Sequence , Cell Line, Tumor , Fatty Acid-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...