Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 300(9): 107721, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214307

ABSTRACT

Obesity has emerged as a major health risk on a global scale. Hinokiflavone (HF), a natural small molecule, extracted from plants like cypress, exhibits diverse chemical structures and low synthesis costs. Using high-fat diet-induced obese mice models, we found that HF suppresses obesity by inducing apoptosis in adipose tissue. Adipocyte apoptosis helps maintain tissue health by removing aging, damaged, or excess cells in adipose tissue, which is crucial in preventing obesity and metabolic diseases. We found that HF can specifically bind to insulin-like growth factor 2 mRNA binding protein 2 to promote the stability of N6-methyladenosine-modified Bim, inducing mitochondrial outer membrane permeabilization. Mitochondrial outer membrane permeabilization leads to Caspase9/3-mediated adipocyte mitochondrial apoptosis, alleviating obesity induced by a high-fat diet. The proapoptotic effect of HF offers a controlled means for weight loss. This study reveals the potential of small molecule HF in developing new therapeutic approaches in drug development and biomedical research.

2.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825295

ABSTRACT

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Subject(s)
Adenosine , Adipocytes , Adipogenesis , Animals , Adipocytes/metabolism , Adipocytes/cytology , Methylation , Swine , Adipogenesis/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Phosphorylase Kinase/genetics , Phosphorylase Kinase/metabolism , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism , Cell Differentiation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL