Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Biol Macromol ; 265(Pt 2): 130822, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521337

ABSTRACT

Ulcerative colitis (UC) is regarded as a recurring inflammatory disorder of the gastrointestinal tract, for which treatment approaches remain notably limited. In this study, we demonstrated that ginseng polysaccharides (GPs) could alleviate the development of dextran sulfate sodium (DSS)-induced UC as reflected by the ameliorated pathological lesions in the colon. GPs strikingly suppressed the expression levels of multiple inflammatory cytokines, as well as significantly inhibited the infiltration of inflammatory cells. Microbiota-dependent investigations by virtue of 16S rRNA gene sequencing, antibiotic treatment and fecal microbiota transplantation illustrated that GPs treatment prominently restored intestinal microbial balance predominantly through modulating the relative abundance of Lactobacillus. Additionally, GPs remarkably influenced the levels of microbial tryptophan metabolites, diminished the intestinal permeability and strengthened intestinal barrier integrity via inhibiting the 5-HT/HTR3A signaling pathway. Taken together, the promising therapeutic potential of GPs on the development of UC predominantly hinges on the capacity to suppress the expression of inflammatory cytokines as well as to influence Lactobacillus and microbial tryptophan metabolites.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Panax , Animals , Mice , Colitis, Ulcerative/drug therapy , Tryptophan , RNA, Ribosomal, 16S , Cytokines , Dextran Sulfate , Disease Models, Animal , Colon , Mice, Inbred C57BL
2.
Int J Biol Sci ; 20(3): 1110-1124, 2024.
Article in English | MEDLINE | ID: mdl-38322116

ABSTRACT

At present, tumor metastasis still remains the leading contributor to high recurrence and mortality in cancer patients. There have been no clinically effective therapeutic strategies for treating patients with metastatic cancer. In recent years, a growing body of evidence has shown that the pre-metastatic niche (PMN) plays a crucial role in driving tumor metastasis. Nevertheless, a clear and detailed understanding of the formation of PMN is still lacking given the fact that PMN formation involves in a wealth of complicated communications and underlying mechanisms between primary tumors and metastatic target organs. Despite that the roles of numerous components including tumor exosomes and extracellular vesicles in influencing the evolution of PMN have been well documented, the involvement of cancer-associated fibroblasts (CAFs) in the tumor microenvironment for controlling PMN formation is frequently overlooked. It has been increasingly recognized that fibroblasts trigger the formation of PMN by virtue of modulating exosomes, metabolism and so on. In this review, we mainly summarize the underlying mechanisms of fibroblasts from diverse origins in exerting impacts on PMN evolution, and further highlight the prospective strategies for targeting fibroblasts to prevent PMN formation.


Subject(s)
Cancer-Associated Fibroblasts , Exosomes , Extracellular Vesicles , Neoplasms , Humans , Prospective Studies , Neoplasms/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Cancer-Associated Fibroblasts/metabolism , Tumor Microenvironment , Neoplasm Metastasis/pathology
3.
Acta Pharmacol Sin ; 45(1): 193-208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37749237

ABSTRACT

Metastasis of colorectal cancer (CRC) is a leading cause of mortality among CRC patients. Elevated COX-2 and PD-L1 expression in colon cancer tissue has been linked to distant metastasis of tumor cells. Although COX-2 inhibitors and immune checkpoint inhibitors demonstrate improved anti-tumor efficacy, their toxicity and variable therapeutic effects in individual patients raise concerns. To address this challenge, it is vital to identify traditional Chinese medicine components that modulate COX-2 and PD-1/PD-L1: rosmarinic acid (RA) exerts striking inhibitory effect on COX-2, while ginsenoside Rg1 (GR) possesses the potential to suppress the binding of PD-1/PD-L1. In this study we investigated whether the combination of RA and GR could exert anti-metastatic effects against CRC. MC38 tumor xenograft mouse model with lung metastasis was established. The mice were administered RA (100 mg·kg-1·d-1, i.g.) alone or in combination with GR (100 mg·kg-1·d-1, i.p.). We showed that RA (50, 100, 150 µM) or a COX-2 inhibitor Celecoxib (1, 3, 9 µM) concentration-dependently inhibited the migration and invasion of MC38 cells in vitro. We further demonstrated that RA and Celecoxib inhibited the metastasis of MC38 tumors in vitro and in vivo via interfering with the COX-2-MYO10 signaling axis and inhibiting the generation of filopodia. In the MC38 tumor xenograft mice, RA administration significantly decreased the number of metastatic foci in the lungs detected by Micro CT scanning; RA in combination with GR that had inhibitory effect on the binding of PD-1 and PD-L1 further suppressed the lung metastasis of colon cancer. Compared to COX-2 inhibitors and immune checkpoint inhibitors, RA and GR displayed better safety profiles without disrupting the tissue structures of the liver, stomach and colon, offering insights into the lower toxic effects of clinical traditional Chinese medicine against tumors while retaining its efficacy.


Subject(s)
Colonic Neoplasms , Lung Neoplasms , Humans , Animals , Mice , B7-H1 Antigen/metabolism , Cyclooxygenase 2/metabolism , Rosmarinic Acid , Celecoxib/pharmacology , Celecoxib/therapeutic use , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Lung Neoplasms/drug therapy
4.
J Oncol ; 2023: 3144086, 2023.
Article in English | MEDLINE | ID: mdl-36844875

ABSTRACT

Background: Non-small cell lung cancer (NSCLC) is still a slightly less orphan disease after immunotherapy, and routine treatment has low efficiency and adverse events. Ginseng is commonly used in the treatment of NSCLC. The purpose of this study is to assess the efficacy and hemorheological indexes of ginseng and its active components in patients with non-small cell lung cancer. Methods: A comprehensive literature search was performed in PubMed, the Cochrane Library, Medline (Ovid), the Web of Science, Embase, CKNI, Wan Fang, VIP, and SinoMed up to July 2021. Only randomized controlled trials evaluating ginseng in combination with chemotherapy versus chemotherapy alone in NSCLC patients were included. Primary outcomes included patients' condition after using ginseng or its active components. Secondary outcomes included changes in immune cells, cytokines, and secretions in serum. Data were extracted by two independent individuals, and the Cochrane Risk of Bias tool version 2.0 was applied for the included studies. Systematic review and meta-analysis were performed by RevMan 5.3 software. Results: The results included 1480 cases in 17 studies. The results of the integration of clinical outcomes showed that the treatment of ginseng (or combination of ginseng with chemotherapy) can improve the quality of life for patients with NSCLC. Analysis of immune cell subtypes revealed that ginseng and its active ingredients can upregulate the percentages of antitumor immunocyte subtypes and downregulate the accounts of immunosuppressive cells. In addition, a reduction of the inflammatory level and an increase of antitumor indicators in serum were reported. Meta-analysis showed that Karnofsky score: WMD = 16, 95% CI (9.52, 22.47); quality-of-life score: WMD = 8.55, 95%CI (6.08, 11.03); lesion diameter: WMD = -0.45, 95% CI (-0.75, -0.15); weight: WMD = 4.49, 95% CI (1.18, 7.80); CD3+: WMD = 8.46, 95% CI (5.71, 11.20); CD4+: WMD = 8.45, 95% CI (6.32, 10.57)+; CD8+: WMD = -3.76, 95% CI (-6.34, -1.18); CD4+/CD8+: WMD = 0.32, 95% CI (0.10, 0.53); MDSC: WMD = -2.88, 95% CI (-4.59, -1.17); NK: WMD = 3.67, 95% CI (2.63, 4.71); Treg: WMD = -1.42, 95% CI (-2.33, -0.51); CEA: WMD = -4.01, 95% CI (-4.12, -3.90); NSE: WMD = -4.00, 95% CI (-4.14, -3.86); IL-2: WMD = 9.45, 95% CI (8.08, 10.82); IL-4: WMD = -9.61, 95% CI (-11.16, -8.06); IL-5: WMD = -11.95, 95% CI (-13.51, -10.39); IL-6: WMD = -7.65, 95% CI (-8.70, -6.60); IL-2/IL-5: WMD = 0.51, 95% CI (0.47, 0.55); IFN-γ: WMD = 15.19, 95% CI (3.16, 27.23); IFN-γ/IL-4: WMD = 0.91, 95% CI (0.85, 0.97); VEGF: WMD = -59.29, 95% CI (-72.99, -45.58); TGF-α: WMD = -10.09, 95% CI (-12.24, -7.94); TGF-ß: WMD = -135.62, 95% CI (-147.00, -124.24); TGF-ß1: WMD = -4.22, 95% CI (-5.04, -3.41); arginase: WMD = -1.81, 95% CI (-3.57, -0.05); IgG: WMD = 1.62, 95% CI (0.18, 3.06); IgM: WMD = -0.45, 95% CI (-0.59, -0.31). All results are statistically significant. No adverse events were reported in the included articles. Conclusion: It is a reasonable choice to use ginseng and its active components as adjuvant therapy for NSCLC. Ginseng is helpful for NSCLC patients' conditions, immune cells, cytokines, and secretions in the serum.

5.
J Ginseng Res ; 47(1): 9-22, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644386

ABSTRACT

As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.

6.
Biomed Pharmacother ; 156: 113897, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36308918

ABSTRACT

Breast cancer is the most commonly diagnosed cancer in the world, and metastasis is often the main cause of death in breast cancer patients. Salvia miltiorrhiza -Ginseng (SG) herb pair is clinically used for the treatment of cardiovascular diseases and cancers. However, the pharmacological action of this pair on breast cancer is yet unclear. In this study, a spontaneous metastasis model of breast cancer was constructed to assess the therapeutic value of SG. After administration of different doses of SG, the results showed that although it did not significantly inhibit tumor growth, high-dose SG administration could inhibit tumor metastasis. Then, based on systematic pharmacology combined with Gene Expression Omnibus (GEO) database, potential targets of drugs were identified such as vascular endothelial growth factor A (VEGFA), matrix metalloproteinase (MMP9), prostaglandin endoperoxide synthase2 (PTGS2), etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis revealed that these targets were related to cytokine-mediated signaling pathway, cell migration and other biological processes and signaling pathways such as PI3K/Akt, etc. The systematic pharmacology analysis showed that SG effectively inhibited the VEGFA and MMP9-mediated biological events such as angiogenesis, epithelial-mesenchymal transition (EMT) and impaired tumor metastasis. Overall, our research aimed to provide new ideas for the treatment of breast cancer lung metastasis in traditional Chinese medicine.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Drugs, Chinese Herbal , Panax , Salvia miltiorrhiza , Humans , Female , Salvia miltiorrhiza/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics , Panax/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Matrix Metalloproteinase 9/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antineoplastic Agents/pharmacology , Medicine, Chinese Traditional , China
7.
Front Immunol ; 13: 874878, 2022.
Article in English | MEDLINE | ID: mdl-35634319

ABSTRACT

Background: The gut-liver axis plays a crucial role in various liver diseases. Therefore, targeting this crosstalk may provide a new treatment strategy for liver diseases. However, the exact mechanism underlying this crosstalk and its impact on drug-induced liver injury (DILI) requires clarification. Aim: This study aimed to investigate the potential mechanism and therapeutic effect of MgIG on MTX-induced liver injury, which is associated with the gut-liver axis and gut microbiota. Methods: An MTX-induced liver injury model was generated after 20-mg/kg/3d MTX application for 30 days. Meanwhile, the treatment group was treated with 40-mg/kg MgIG daily. Histological examination, aminotransferase, and aspartate aminotransferase enzyme levels were estimated to evaluate liver function. Immune cells infiltration and inflammatory cytokines were detected to indicate inflammation levels. Colon histological score, intestinal barrier leakage, and expression of tight junctions were employed to assess the intestinal injury. Bacterial translocation was observed using fluorescent in situ hybridisation, colony-forming unit counting, and lipopolysaccharide detection. Alterations in gut microbial composition were analysed using 16s rDNA sequencing and relative quantitative polymerase chain reaction. Short-chain-fatty-acids and lactic acid concentrations were then utilized to validate changes in metabolites of specific bacteria. Lactobacillus sp. supplement and fecal microbiota transplantation were used to evaluate gut microbiota contribution. Results: MTX-induced intestinal and liver injuries were significantly alleviated using MgIG treatment. Bacterial translocation resulting from the intestinal barrier disruption was considered a crucial cause of MTX-induced liver injury and the therapeutic target of MgIG. Moreover, MgIG was speculated to have changed the gut microbial composition by up-regulating probiotic Lactobacillus and down-regulating Muribaculaceae, thereby remodelling the intestinal barrier and inhibiting bacterial translocation. Conclusion: The MTX-induced intestinal barrier was protected owing to MgIG administration, which reshaped the gut microbial composition and inhibited bacterial translocation into the liver, thus attenuating MTX-related DILI.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Liver Diseases , Humans , Liver Diseases/microbiology , Methotrexate/adverse effects , Saponins , Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...