Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 265: 122247, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39178593

ABSTRACT

Achieving mainstream short-cut nitrogen removal via nitrite has become a carbon and energy efficient way, but still remains challenging for low-strength municipal wastewaters. This study integrated sidestream enhanced biological phosphorus removal system in a pilot-scale adsorption/bio-oxidation (A-B) process (named A-B-S2EBPR system) and nitrite accumulation was successfully achieved for treating the municipal wastewater. Nitrite could accumulate to 5.5 ± 0.3 mg N/L in the intermittently aerated tanks of B-stage with the nitrite accumulation ratio (NAR) of 79.1 ± 6.5 %. The final effluent concentration and removal efficiency of total inorganic nitrogen (TIN) were 4.6 ± 1.8 mg N/L and 84.9 ± 5.6 %, respectively. In-situ process performance of nitrogen conversions, routine batch nitrification/denitrification activity tests and functional gene abundance of nitrifiers collectively suggested that the nitrite accumulation was mainly caused by partial denitrification rather than out-selection of nitrite oxidizing bacteria (NOB). Moreover, the single-cell Raman spectroscopy analysis first demonstrated that there was a specific microbial population that could utilize polyhydroxyalkanoates (PHA) as the potential internal carbon source during the partial denitrification process. The integration of S2EBPR brings unique features to the conventional A-B process, such as extended anaerobic retention time, lower oxidation-reduction potential (ORP), much higher and complex volatile fatty acids (VFAs) etc., which can largely reshape the microbial communities. The dominant genera were Acinetobacter and Comamonadaceae, which accounted for (17.8 ± 15.5)% and (6.7 ± 3.4)%, respectively, while the relative abundance of conventional nitrifiers was less than 0.2%. This study provides insights into phylogenetic and phenotypic shifts of microbial communities when incorporating S2EBPR into the sustainable A-B process to achieve mainstream short-cut nitrogen removal.


Subject(s)
Carbon , Denitrification , Nitrogen , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Bioreactors , Nitrites/metabolism , Bacteria/metabolism , Water Purification/methods , Pilot Projects , Phosphorus
2.
Water Res ; 253: 121220, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38341969

ABSTRACT

A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.17 mg-N/L nitrite accumulation was achieved through atypical partial nitrification without canonical known NOB out-selection. Network analysis confirms the central hub of microbial community as Nitrospira, which was one to two orders of magnitude higher than canonical aerobic oxidizing bacteria (AOB) in a B-stage nitrification tank. The contribution of comammox Nitrospira as AOB was evidenced by the increased amoB/nxr ratio and higher ammonia oxidation activity. Furthermore, oligotyping analysis of Nitrospira revealed two dominant sub-clusters (microdiveristy) within the Nitrospira. The relative abundance of oligotype II, which is phylogenetically close to Nitrospira_midas_s_31566, exhibited a positive correlation with nitrite accumulation in the same operational period, suggesting its role as comammox Nitrospira. Additionally, the phylogenetic investigation suggested that heterotrophic organisms from the family Comamonadacea and the order Rhodocyclaceae embedding ammonia monooxygenase and hydroxylamine oxidase may function as heterotrophic nitrifiers. This is the first study that elucidated the impact of integrating the S2EBPR on nitrifying populations with implications on short-cut N removal. The unique conditions in the side-stream reactor, such as low ORP, favorable VFA concentrations and composition, seemed to exert different selective forces on nitrifying populations from those in conventional biological nutrient removal processes. The results provide new insights for integrating EBPR with short-cut N removal process for mainstream wastewater treatment.


Subject(s)
Ammonia , Nitrites , Phylogeny , Oxidation-Reduction , Bacteria/genetics , Nitrification
3.
Water Res ; 251: 121089, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277823

ABSTRACT

We piloted the incorporation of side-stream enhanced biological phosphorus removal (S2EBPR) with A/B stage short-cut nitrogen removal processes to enable simultaneous carbon-energy-efficient nutrients removal. This unique configuration and system conditions exerted selective force on microbial populations distinct from those in conventional EBPR. Interestingly, effective P removal was achieved with the predominance of Acinetobacter (21.5 ± 0.1 %) with nearly negligible level of known conical PAOs (Ca. Accumulibacter and Tetrasphaera were 0.04 ± 0.10 % and 0.47 ± 0.32 %, respectively). Using a combination of techniques, such as fluorescence in situ hybridization (FISH) coupled with single cell Raman spectroscopy (SCRS), the metabolic tracing of Acinetobacter-like cells exerted PAO-like phenotypic profiling. In addition, comparative metagenomics analysis of the closely related Acinetobacter spp. revealed the EBPR relevant metabolic pathways. Further oligotyping analysis of 16s rRNA V4 region revealed sub-clusters (microdiversity) of the Acinetobacter and revealed that the sub-group (oligo type 1, identical (100 % alignment identity) hits from Acinetobacter_midas_s_49494, and Acinetobacter_midas_s_55652) correlated with EBPR activities parameters, provided strong evidence that the identified Acinetobacter most likely contributed to the overall P removal in our A/B-shortcut N-S2EBPR system. To the best of our knowledge, this is the first study to confirm the in situ EBPR activity of Acinetobacter using combined genomics and SCRS Raman techniques. Further research is needed to identify the specific taxon, and phenotype of the Acinetobacter that are responsible for the P-removal.


Subject(s)
Phosphorus , Rivers , Phosphorus/metabolism , RNA, Ribosomal, 16S/genetics , In Situ Hybridization, Fluorescence , Bioreactors , Polyphosphates/metabolism , Sewage
4.
Environ Sci Technol ; 57(35): 13247-13257, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37615362

ABSTRACT

Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.


Subject(s)
Denitrification , Wastewater , Nitrites , Sewage , Nitrogen , Phosphorus
5.
Microb Biotechnol ; 14(1): 82-87, 2021 01.
Article in English | MEDLINE | ID: mdl-33404187

ABSTRACT

We first review current knowledge on PAOs, with a focus on bacteria, in terms of their phylogenetic identities, metabolic pathways and detection methods. We further discuss the evidence that suggests the ubiquitous presence of PAOs in nature and point out the unrevealed roles of the PAOs that warrant future investigation.


Subject(s)
Bioreactors , Polyphosphates , Glycogen , Phosphorus , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL