Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biochem Cell Biol ; 171: 106583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657899

ABSTRACT

Protein crotonylation plays a role in regulating cellular metabolism, gene expression, and other biological processes. NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9) is closely associated with the activity and function of mitochondrial respiratory chain complex I. Mitochondrial function and respiratory chain are closely related to browning of white adipocytes, it's speculated that NDUFA9 and its crotonylation are associated with browning of white adipocytes. Firstly, the effect of NDUFA9 on white adipose tissue was verified in white fat browning model mice, and it was found that NDUFA9 promoted mitochondrial respiration, thermogenesis, and browning of white adipose tissue. Secondly, in cellular studies, it was discovered that NDUFA9 facilitated browning of white adipocytes by enhancing mitochondrial function, mitochondrial complex I activity, ATP synthesis, and mitochondrial respiration. Again, the level of NDUFA9 crotonylation was increased by treating cells with vorinostat (SAHA)+sodium crotonate (NaCr) and overexpressing NDUFA9, it was found that NDUFA9 crotonylation promoted browning of white adipocytes. Meanwhile, the acetylation level of NDUFA9 was increased by treating cells with SAHA+sodium acetate (NaAc) and overexpressing NDUFA9, the assay revealed that NDUFA9 acetylation inhibited white adipocytes browning. Finally, combined with the competitive relationship between acetylation and crotonylation, it was also demonstrated that NDUFA9 crotonylation promoted browning of white adipocytes. Above results indicate that NDUFA9 and its crotonylation modification promote mitochondrial function, which in turn promotes browning of white adipocytes. This study establishes a theoretical foundation for the management and intervention of obesity, which is crucial in addressing obesity and related medical conditions in the future.


Subject(s)
Adipocytes, White , Mitochondria , Animals , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Adipocytes, White/metabolism , Adipocytes, White/drug effects , Adipocytes, White/cytology , Male , Mice, Inbred C57BL , Thermogenesis/drug effects , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , 3T3-L1 Cells , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Acetylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL