Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Phys Chem Chem Phys ; 26(15): 11618-11630, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38546226

ABSTRACT

In this work, CuM/CeO2 (M = Mn, Fe, Co, Ni, and Zr) catalysts with a low Cu content of 1 wt% were purposely designed and prepared using the co-impregnation method. The samples were characterized using various techniques (TG-DTA, XRD, N2-adsorption/desorption measurements, H2-TPR, XPS and Raman spectroscopy) and CO preferential oxidation (CO-Prox) under H2/CO2-rich conditions was performed. The results have shown that enhanced catalytic performance was achieved upon the introduction of Mn, Co and Ni, and little impact was observed with Zr doping, but Fe showed a negative effect, as compared with the Cu/CeO2 catalyst. Characterization data revealed that the M doping strongly changed the surface composition, revealing the decreased Cu/Ce ratios on the surface, which could be accounted for by the formation of more M/Cu-O-Ce solid solution, or strong Cu-M interactions. When Mn was used, the obtained CuMn/CeO2 catalyst revealed the highest concentration of the oxygen vacancies and Ce3+ ions, which could be correlated well with its superior catalytic performance. Compared with the Cu/CeO2 catalyst, the CO conversion rate increased by 24.7% at a low temperature of 90 °C over the CuMn/CeO2 catalyst. At 130 °C, the maximum CO conversion was 94.7% and the CO2 selectivity was 78.9%. Conversely, the Fe doped Cu/CeO2 catalyst demonstrated the poorest catalytic activity, which was due to the blockage effect of Fe species on Cu showing a high Fe/Cu ratio of 1.9 on the surface.

2.
Phys Chem Chem Phys ; 25(47): 32557-32568, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37999632

ABSTRACT

The adsorption of O2 on Cu/CeO2(111) and the CO oxidation reactivity of the formed oxygen species were studied using the DFT method. The results showed that superoxide species (O2δ-), which directly interacted with Cu, formed when O2 adsorbed on the surface oxygen vacancies, while O2 adsorbed on the subsurface oxygen vacancies gave rise to ozone-like O3δ- species by combining with the nearest surface lattice oxygen (O1). PDOS showed that hybridization of the 2p orbitals between O2 and O1 formed a delocalized π bond, confirming the formation of O3δ-. For O2δ-, electrons on Cu and O1 transferred to O2 while the charge of Ce remained unchanged. However, for O3δ-, the transferred electrons were mainly from O1, and partially from O2, Ce1 and Ce2. It was very interesting that Cu also received a few electrons in the latter case. Compared with CO directly adsorbed on lattice oxygen, the two oxygen species were active for CO oxidation, forming CO2 or carbonates, and higher absolute adsorption energy was obtained with the interaction between CO and O3δ-. The findings of this study provide new insight on the CO oxidation reaction mechanism, facilitating an in-depth understanding of Cu-doped CeO2 catalysts.

3.
Chem Sci ; 14(17): 4538-4548, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37152256

ABSTRACT

G-quadruplexes (G4s) are significant nucleic acid secondary structures formed by guanine-rich sequences. Many single-emission G4 fluorescent probes that are lit up by inhibiting intramolecular rotation have been reported. However, they are non-fluorescent unless structurally rigidified, making them sensitive to other intracellular crowding and confinement environments in the cell, like viscosity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Herein, we structurally modulate green fluorescent protein (GFP)-like chromophores by integrating the imidazolidinone scaffold of the GFP chromophore and coumarin 6H, obtaining a G4 responsive dual-emission chromophore, called NHCouI. The red emission signal of NHCouI can specifically respond to parallel G4s, while its green emission signal is inert and acts as an internal reference signal. NHCouI-G4 complexes feature high fluorescence quantum yield and excellent anti-photobleaching properties. NHCouI can self-calibrate the signal and avoid viscosity disturbances within the range of major subcellular organelles during G4 imaging in living cells. It is also applied to reflect the difference between apoptosis and ferroptosis via tracking G4s. To the best of our knowledge, NHCouI is the first small molecule G4 probe enabled by internal reference correction capability, opening up new avenues for dual-emission chromophore development and high-fidelity and reliable analysis in G4 imaging research.

4.
Org Lett ; 25(11): 1918-1923, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36926928

ABSTRACT

We described herein a neoteric enantioselective cascade Michael/acyl transfer reaction of enynones and α-hydroxy aryl ketones catalyzed by dinuclear zinc cooperative catalysis. A series of structurally diverse chiral 1,5-dicarbonyl compounds were synthesized in good yields with excellent stereoselectivities. This strategy features broad substrate scope, high atom economy, as well as enynones as efficient electrophilic acyl transfer reagents in asymmetric cascade reactions for the first time.

5.
Cell Mol Neurobiol ; 43(2): 827-840, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35435537

ABSTRACT

Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.


Subject(s)
Depression , Depressive Disorder, Major , Mice , Animals , Dendritic Spines/metabolism , Social Defeat , Depressive Disorder, Major/metabolism , Taurine/metabolism , Taurine/pharmacology , Neurons , Amino Acids/metabolism , Amino Acids/pharmacology , Stress, Psychological/metabolism , Prefrontal Cortex/metabolism , Mice, Inbred C57BL
6.
Chem Sci ; 13(41): 12187-12197, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36349109

ABSTRACT

Multicolor conditional labeling is a powerful tool that can simultaneously and selectively visualize multiple targets for bioimaging analysis of complex biological processes and cellular features. We herein report a multifunctional stimuli-responsive Fluorescence-Activating and absorption-Shifting Tag (srFAST) chemogenetic platform for multicolor cell-selective labeling. This platform comprises stimuli-responsive fluorogenic ligands and the organelle-localizable FAST. The physicochemical properties of the srFAST ligands can be tailored by modifying the optical-tunable hydroxyl group with diverse reactive groups, and their chemical decaging process caused by cell-specific stimuli induces a conditionally activatable fluorescent labeling upon binding with the FAST. Thus, the resulting switch-on srFASTs were designed for on-demand labeling of cells of interest by spatiotemporally precise photo-stimulation or unique cellular feature-dependent activation, including specific endogenous metabolites or enzyme profiles. Furthermore, diverse enzyme-activatable srFAST ligands with distinct colors were constructed and simultaneously exploited for multicolor cell-selective labeling, which allow discriminating and orthogonal labeling of three different cell types with the same protein tag. Our method provides a promising strategy for designing a stimuli-responsive chemogenetic labeling platform via facile molecular engineering of the synthetic ligands, which has great potential for conditional multicolor cell-selective labeling and cellular heterogeneity evaluation.

7.
Biopolymers ; 113(12): e23528, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36444749

ABSTRACT

G-quadruplexes (G4s), the noncanonical nucleic acid secondary structure, form within guanine-rich DNA or RNA sequences. G4s formation can affect chromatin architecture and gene regulation and has been associated with various cellular functions, including DNA replication, transcription, and genome maintenance. Visualizing and detecting G4s precisely in such processes is essential to increasing our understanding of G4s biology. Considerable attention has focused on the G4s targeting molecular imaging studies. Besides, fluorescent light-up aptamers (FLAPs, also referred to as fluorogenic aptamers) have gained momentum, which commonly have a G4 scaffolding for imaging intracellular RNAs and metabolites. In this review, we first introduce several representative fluorescent imaging approaches for tracking G4s in cells and in vivo. We also discuss the potential of G4-containing FLAPs in bioimaging and summarize current developments in this field from the standpoint of fluorescent molecules. Finally, we discuss the present challenges and future potential of G4 imaging and G4-containing FLAPs development.


Subject(s)
G-Quadruplexes , DNA/chemistry , RNA/chemistry , Oligonucleotides , Gene Expression Regulation
8.
Gut Microbes ; 14(1): 2125747, 2022.
Article in English | MEDLINE | ID: mdl-36128620

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous psychiatric disorder that can have three phenotypical presentations: inattentive (I-ADHD), hyperactive-impulsive (HI-ADHD), and combined (C-ADHD). Environmental factors correlated with the gut microbiota community have been implicated in the development of ADHD. However, whether different ADHD symptomatic presentations are associated with distinct microbiota compositions and whether patients could benefit from the correction of aberrant bacterial colonization are still largely unclear. We carried out metagenomic shotgun analysis with 207 human fecal samples to characterize the gut microbial profiles of patients with ADHD grouped according to their phenotypical presentation. Then, we transplanted the candidate low-abundance bacteria identified in patient subgroups into ADHD rats and evaluated ADHD-associated behaviors and neuronal activation in these rats. Patients with C-ADHD had a different gut microbial composition from that of healthy controls (HCs) (p = .02), but not from that of I-ADHD patients. Eight species became progressively attenuated or enriched when comparing the compositions of HCs to those of I-ADHD and C-ADHD; in particular, the abundance of Bacteroides ovatus was depleted in patients with C-ADHD. In turn, Bacteroides ovatus supplementation ameliorated spatial working memory deficits and reversed θ electroencephalogram rhythm alterations in ADHD rats. In addition, Bacteroides ovatus induced enhanced neuronal activation in the hippocampal CA1 subregion. These findings indicate that gut microbial characteristics that are unique to patients with C-ADHD may be masked when considering a more heterogeneous group of patients. We link the gut microbiota to brain function in an ADHD animal model, suggesting the relevance of testing a potential bacteria-based intervention for some aspects of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cognitive Dysfunction , Gastrointestinal Microbiome , Animals , Attention Deficit Disorder with Hyperactivity/microbiology , Bacteroides , Cognition , Gastrointestinal Microbiome/physiology , Humans , Rats
9.
J Headache Pain ; 22(1): 147, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895135

ABSTRACT

BACKGROUND: Accumulating studies have indicated a wide range of brain alterations with respect to the structure and function of classic trigeminal neuralgia (CTN). Given the dynamic nature of pain experience, the exploration of temporal fluctuations in interregional activity covariance may enhance the understanding of pain processes in the brain. The present study aimed to characterize the temporal features of functional connectivity (FC) states as well as topological alteration in CTN. METHODS: Resting-state functional magnetic resonance imaging and three-dimensional T1-weighted images were obtained from 41 CTN patients and 43 matched healthy controls (HCs). After group independent component analysis, sliding window based dynamic functional network connectivity (dFNC) analysis was applied to investigate specific FC states and related temporal properties. Then, the dynamics of the whole brain topological organization were estimated by calculating the coefficient of variation of graph-theoretical properties. Further correlation analyses were performed between all these measurements and clinical data. RESULTS: Two distinct states were identified. Of these, the state 2, characterized by complicated coupling between default mode network (DMN) and cognitive control network (CC) and tight connections within DMN, was expressed more in CTN patients and presented as increased fractional windows and dwell time. Moreover, patients switched less frequently between states than HCs. Regarding the dynamic topological analysis, disruptions in global graph-theoretical properties (including network efficiency and small-worldness) were observed in patients, coupled with decreased variability in nodal efficiency of anterior cingulate cortex (ACC) in the salience network (SN) and the thalamus and caudate nucleus in the subcortical network (SC). The variation of topological properties showed negative correlation with disease duration and attack frequency. CONCLUSIONS: The present study indicated disrupted flexibility of brain topological organization under persistent noxious stimulation and further highlighted the important role of "dynamic pain connectome" regions (including DMN/CC/SN) in the pathophysiology of CTN from the temporal fluctuation aspect. Additionally, the findings provided supplementary evidence for current knowledge about the aberrant cortical-subcortical interaction in pain development.


Subject(s)
Connectome , Trigeminal Neuralgia , Brain/diagnostic imaging , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Trigeminal Neuralgia/diagnostic imaging
10.
Chem Commun (Camb) ; 57(77): 9854-9857, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34490871

ABSTRACT

An enantioselective Friedel-Crafts alkylation/cyclization tandem reaction of 3-aminophenols with α,α-dicyanoolefins has been performed successfully using a chiral dinuclear zinc catalyst, leading to a range of chiral 2-amino-4H-chromenes (up to 98% yield and >99% ee). To the best of our knowledge, this is the first asymmetric example of the dinuclear zinc-catalysed functionalization of aromatic C(sp2)-H bonds.

11.
Brain Res Bull ; 174: 1-10, 2021 09.
Article in English | MEDLINE | ID: mdl-34058285

ABSTRACT

N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic plasticity at the thalamus-lateral amygdala (T-LA) synapses is related to acquisition and extinction of auditory fear memory. However, the roles of the NMDAR GluN2A subunit in acquisition and extinction of auditory fear memory as well as synaptic plasticity at T-LA synapses remain unclear. Here, using electrophysiologic, molecular biological techniques and behavioral methods, we found that the forebrain specific GluN2A overexpression transgenic (TG) mice exhibited normal acquisition but impaired extinction of auditory fear memory. In addition, in vitro electrophysiological data showed normal basal synaptic transmission and NMDAR-dependent long-term potentiation (LTP) at T-LA synapses, but deficit in NMDAR-dependent long-term depression (LTD) at T-LA synapses in GluN2A TG mice. Consistent with the reduced NMDAR-dependent LTD, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization was also weakened during NMDAR-dependent LTD in GluN2A TG mice. Taken together, our findings for the first time indicate that GluN2A overexpression impairs extinction of auditory fear memory and NMDAR-dependent LTD at T-LA synapses, which further confirms the close relationship between NMDAR-dependent LTD and fear extinction.


Subject(s)
Amygdala/physiology , Extinction, Psychological/physiology , Fear/psychology , Long-Term Synaptic Depression/genetics , Long-Term Synaptic Depression/physiology , Prosencephalon/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Acoustic Stimulation , Animals , Behavior, Animal , Electrophysiological Phenomena , Gene Expression , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Mice , Neuronal Plasticity , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/biosynthesis , Receptors, N-Methyl-D-Aspartate/genetics
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-988566

ABSTRACT

Objective To investigate the effect of FBXW7 on the expression and localization of HSF1 in colorectal cancer cells. Methods The expression levels of HSF1 and pHSF1Ser326 protein in FBXW7 deletion (KO) and wild-type (WT) FBXW7-expressing counterpart colorectal cancer cells were detected by Western blot. The nucleoprotein expression and localization of pHSF1Ser326 in heat-shocked or recovery stage cells were observed by Western blot and immunofluorescence method. Results The HSF1 expression level in DLD1 cells transfected with FBXW7α was decreased significantly (P < 0.01). The expression levels of HSF1 and pHSF1Ser326 protein in FBXW7 KO cells were higher than those in WT cells (all P < 0.05). HSF1 and pHSF1Ser326 in FBXW7 KO cells were mainly expressed in nucleus and weakly expressed in cytoplasm. After warm stimulation, the expression of HSF1 and pHSF1Ser326 in WT cells recovered to the unstimulated level, while the expression of HSF1 and pHSF1Ser326 in FBXW7 KO cells were higher in the nucleus (all P < 0.01). Conclusion Loss of FBXW7 could affect the nuclear HSF1 recovery after warm stimulation. It may be associated with FBXW7 deletion inhibiting the degradation of nuclear HSF1.

13.
Comput Biol Chem ; 89: 107395, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33032039

ABSTRACT

It has become obvious that fluorinated drugs have a significant role in medicinal applications. In this study, the fluorination of 3-nitrotyrosine as an anti-Parkinson and anti-Alzheimer drug was explored using density functional theory calculations. We have investigated the most important chemical properties of 3-nitrotyrosine that affect the pharmacological activity of the drug. We found that the intramolecular hydrogen bonding and intramolecular charge of the drug were influenced by fluorine substitution. Our results also reveal that the fluorination altered the stability, solubility, and molecular polarity of the 3-nitrotyrosine drug. The density of state analysis also determines sharp resonance states of fluorine atoms with the 3-nitrotyrosine drug states particularly in the highest molecular orbital reigns, suggesting hybridization of the fluorine states with the state of the drug. Moreover, our results show that the electronic spectra of fluorinated derivatives of 3-nitrotyrosine drug exhibit a red shift toward higher wavelengths (lower energies). Our calculations show that the free energy transfers of fluorinated derivatives of the 3-nitrotyrosine drug in water were negative that it meant that the designed molecules dissolving in aqueous phase occurred simultaneously. Consequently, the results of the present study show that the fluorination of 3-nitrotyrosine drug could be considered as a promising strategy to design useful drugs with better pharmacological properties.


Subject(s)
Antiparkinson Agents/chemistry , Neuroprotective Agents/chemistry , Tyrosine/analogs & derivatives , Density Functional Theory , Drug Stability , Halogenation , Hydrogen Bonding , Models, Chemical , Thermodynamics , Tyrosine/chemistry
14.
Neurosci Bull ; 36(12): 1513-1523, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33048310

ABSTRACT

General anesthesia severely affects the metabolites in the brain. Glycogen, principally stored in astrocytes and providing the short-term delivery of substrates to neurons, has been implicated as an affected molecule. However, whether glycogen plays a pivotal role in modulating anesthesia-arousal remains unclear. Here, we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions. Glycogen synthase (GS) and glycogen phosphorylase (GP), key enzymes of glycogen metabolism, showed increased activity after isoflurane exposure. Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), a GP antagonist, we found a prolonged time of emergence from anesthesia and an enhanced δ frequency in the EEG (electroencephalogram). In addition, augmented expression of glycogenolysis genes in glycogen phosphorylase, brain (Pygb) knock-in (PygbH11/H11) mice resulted in delayed induction of anesthesia, a shortened emergence time, and a lower ratio of EEG-δ. Our findings revealed a role of brain glycogen in regulating anesthesia-arousal, providing a potential target for modulating anesthesia.


Subject(s)
Anesthesia , Brain , Glycogen , Isoflurane , Animals , Astrocytes/metabolism , Brain/metabolism , Glycogen/metabolism , Glycogen Phosphorylase/metabolism , Glycogen Synthase/metabolism , Isoflurane/pharmacology , Mice
15.
Pest Manag Sci ; 76(1): 304-313, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31207079

ABSTRACT

BACKGROUND: Entomogenous fungi are important factors in biological control, but innate immunity of insects restricts the efficiency of fungus infection. 20-hydroxyecdysone (20E) is involved in regulating the immune response of insects. Our previous studies have revealed that 20E enhances the expression of antibacterial peptides in the worldwide pest Locusta migratoria. However, the mechanism by which 20E controls innate immunity against entomogenous fungi is still unknown. RESULTS: In the present study, based on the transcriptome of L. migratoria fat bodies challenged by 20E, immulectin-1 (LmIML-1) was screened and identified to be involved in modulating antifungal immunity. Spatio-temporal expression analysis showed LmIML-1 was highly expressed in the fifth instar nymph stage, and mainly distributed in the fat bodies and hemolymph. Both exogenous and endogenous 20E could increase the transcription of LmIML-1. In contrast, transcription of LmIML-1 did not increase when the 20E signal was blocked by RNAi of LmEcR (ecdysone receptor). The expressed recombinant protein rLmIML-1 possessed agglutination activity and promoted the encapsulation. RNA interference of LmIML-1 reduced the encapsulation of hemocytes, decreased the antifungal activity of plasma against Metarhizium anisopliae and accelerated the death of nymphs under the stress of entomogenous fungus. Meanwhile, 20E did not increase the antifungal activity with silence of LmIML-1 in L. migratoria. CONCLUSION: 20E enhances antifungal immunity by activating immulectin-1 in L. migratoria. Our findings indicate a potential mechanism of 20E systematically regulating innate immune response to resist pathogens and provide a well-defined molecular target for improving biological control. © 2019 Society of Chemical Industry.


Subject(s)
Locusta migratoria , Animals , Ecdysterone , Hemolymph , Insect Proteins , Nymph , RNA Interference
16.
Behav Brain Res ; 379: 112384, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31778735

ABSTRACT

Alzheimer's disease (AD) is a chronic degenerative disease of the central nervous system and the most common dementia type in elderly people. N-myc downstream-regulated gene 2 (NDRG2), a cell stress response gene, is primarily expressed in astrocytes in mammalian brains. The hippocampal protein levels of NDRG2 in AD patients were significantly higher than those in healthy peers. However, whether the increase in NDRG2 is involved in the development of AD or is an endogenous protective response initiated by stress remains unknown. Here, we investigated the roles of NDRG2 in the development of memory impairment in AD using mouse models established by amyloid ß injection or crossing of APP/PS1 mice. We found that NDRG2 deficiency worsened the memory impairment in AD mice. In addition, NDRG2 deletion induced downregulation of the proteasome functional subunit PSMB6 in AD mice. These findings suggest that NDRG2 is an endogenous neuroprotectant that participates in the pathological course of waste-clearing impairment and memory damage in AD. NDRG2 may be a therapeutic target for the intervention of AD memory degradation.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Alzheimer Disease/genetics , Memory Disorders/genetics , Adaptor Proteins, Signal Transducing/deficiency , Animals , Behavior, Animal/physiology , Disease Models, Animal , Down-Regulation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recognition, Psychology/physiology
17.
Org Biomol Chem ; 17(48): 10167-10171, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31782473

ABSTRACT

A strategy for the synthesis of isoxazolidine/1,2-oxazinane-fused isoquinolin-1(2H)-ones from alkyne-tethered N-alkoxyamides is described, in which cheap Mn(acac)2 is used as a catalyst to facilitate a radical cascade annulation. The method features mild conditions, additive-free reaction and broad substrate scope. It is the first example via manganese/air catalytic systems to construct isoquinolin-1(2H)-one heterocycles.

18.
Front Plant Sci ; 10: 759, 2019.
Article in English | MEDLINE | ID: mdl-31244876

ABSTRACT

Alkaline stress (AS) is one of the abiotic stressful factors limiting plant's growth and development. Inorganic pyrophosphatase is usually involved in a variety of biological processes in plant in response to the abiotic stresses. Here, to clarify the responsive regulation of inorganic pyrophosphatase in rice under AS, the mutagenesis of the OsPPa6 gene encoding an inorganic pyrophosphatase in rice cv. Kitaake (Oryza sativa L. ssp. japonica) was performed by the CRISPR/Cas9 system. Two homozygous independent mutants with cas9-free were obtained by continuously screening. qPCR reveals that the OsPPa6 gene was significantly induced by AS, and the mutagenesis of the OsPPa6 gene apparently delayed rice's growth and development, especially under AS. Measurements demonstrate that the contents of pyrophosphate in the mutants were higher than those in the wild type under AS, however, the accumulation of inorganic phosphate, ATP, chlorophyll, sucrose, and starch in the mutants were decreased significantly, and the mutagenesis of the OsPPa6 gene remarkably lowered the net photosynthetic rate of rice mutants, thus reducing the contents of soluble sugar and proline, but remarkably increasing MDA, osmotic potentials and Na+/K+ ratio in the mutants under AS. Metabonomics measurement shows that the mutants obviously down-regulated the accumulation of phosphorylcholine, choline, anthranilic acid, apigenin, coniferol and dodecanoic acid, but up-regulated the accumulation of L-valine, alpha-ketoglutarate, phenylpyruvate and L-phenylalanine under AS. This study suggests that the OsPPa6 gene is an important osmotic regulatory factor in rice, and the gene-editing of CRISPR/Cas9-guided is an effective method evaluating the responsive regulation of the stress-induced gene, and simultaneously provides a scientific support for the application of the gene encoding a soluble inorganic pyrophosphatase in molecular breeding.

19.
Orthop Surg ; 11(1): 143-150, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30834706

ABSTRACT

OBJECTIVES: To explore the effects of acupoint application therapy (AAT) with TianGui Powder (TGP) on the expressions of the transforming growth factor ß1 (TGF-ß1) and Smad-2/3 signaling pathway in ovariectomized osteoporosis rats. METHODS: Sixty rats were randomly divided into four groups: normal group (group A), model group (group B), TGP group (group C), and Western medicine group (group D). Group A had only the corresponding amount of adipose tissue around the ovary removed; rats in the other groups had bilateral ovariectomies. After 1 week, groups A and B were given 1 mL/100 mg normal saline solution by gavage, group C was treated with AAT with TGP on ShenQue acupoint (0.2 piece/rat, 6 h/time, 1 time/d) and group D was given calcium carbonate vitamin D3 (36 mg/kg/d) and alfacalcidol (0.05 µg/kg/d) tablet suspension. In this study, the bone mineral density (BMD) , the levels of BALP, TRAP-5b, and BGP in serum and the changes in bone histomorphology was detected. For acquiring lumbar experimental data, the expression of TGF-ß1, Smad-2/3 proteins and mRNA of TGF-ß1and Smad-2/3 were assessed. After 12 weeks, the data were collected for analysis. RESULTS: Compared with group A, the bone trabecula was thinner and significantly reduced in other groups. The result of BMD improved significantly in both groups C and D compared to group B after intervention (P < 0.05). In contrast, compared to group B, the levels of BALP, TRAP-5b, and BGP significantly declined in both groups C and D. In group C, the results of protein expressions in TGF-ß1, Smad-2/3 were 2.870 ± 0.270, 1.552 ± 0.111, and 1.420 ± 0.079, respectively. In groups C and D, those indications significantly declined compared to group B (P < 0.01). In group C, the level of mRNA expressions of TGF-ß1, Smad-2/3 were 1.872 ± 0.177, 1.672 ± 0.086, and 1.790 ± 0.136, respectively. Compared with group B, those indications had significant difference in groups C and D (P < 0.05). CONCLUSION: Acupoint application therapy with TGP could significantly improve the BMD. The TGF-ß1 and Smad-2/3 signaling pathway could be a therapeutic target of TGP in postmenopausal osteoporosis rats.


Subject(s)
Acupuncture Points , Bone Density Conservation Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Osteoporosis, Postmenopausal/therapy , Animals , Bone Density/drug effects , Bone Density Conservation Agents/pharmacology , Drug Evaluation, Preclinical/methods , Drugs, Chinese Herbal/pharmacology , Female , Humans , Osteoporosis, Postmenopausal/physiopathology , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction/drug effects , Smad2 Protein/physiology , Smad3 Protein/physiology , Transforming Growth Factor beta1/physiology
20.
Beilstein J Org Chem ; 14: 2090-2097, 2018.
Article in English | MEDLINE | ID: mdl-30202462

ABSTRACT

A cobalt-catalyzed C(sp2)-H alkoxylation of 1-naphthylamine derivatives has been disclosed, which represents an efficient approach to synthesize aryl ethers with broad functional group tolerance. It is noteworthy that secondary alcohols, such as hexafluoroisopropanol, isopropanol, isobutanol, and isopentanol, were well tolerated under the current catalytic system. Moreover, a series of biologically relevant fluorine-aryl ethers were easily obtained under mild reaction conditions after the removal of the directing group.

SELECTION OF CITATIONS
SEARCH DETAIL
...