Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eco Environ Health ; 3(3): 290-299, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39263270

ABSTRACT

The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae Chlorella vulgaris following single and repeated exposures to cerium oxide nanoparticles (CeO2 NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in C. vulgaris compared to a single exposure. Photosynthesis-related genes (i.e., petA, petB, psaA, atpB, and rbcL) were found to be upregulated following repeated exposures. Particularly for petB, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92-10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO2 NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.

2.
J Hazard Mater ; 475: 134815, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885582

ABSTRACT

Nanoplastics (NPs), especially those with different charges, as one of emerging contaminants pose a threat to aquatic ecosystems. Although differentially charged NPs could induce distinct biological effects, mechanistic understanding of the critical physiological processes of aquatic organisms from an integrated multilevel perspective on aquatic organisms is still uncertain. Herein, multi-effects of differentially charged nanosized polystyrene (nPS) including neutral nPS, nPS-COOH, and nPS-NH2 on the photosynthesis-related physiological processes of algae were explored at the population, individual, subcellular, protein, and transcriptional levels. Results demonstrated that both nPS and nPS-COOH exhibited hormesis to algal photosynthesis but nPS-NH2 triggered severe inhibition. As for nPS-NH2, the integrity of algal subcellular structure, chlorophyll biosynthesis, and expression of photosynthesis-related proteins and genes were interfered. Intracellular NPs' content in nPS treatment was 25.64 % higher than in nPS-COOH treatment, and the content of chloroplasts in PS and nPS-COOH treatment were 3.09 % and 4.56 % higher than control, respectively. Furthermore, at the molecular levels, more photosynthesis-related proteins and genes were regulated under nPS-COOH exposure than those exposed to nPS. Light-harvesting complex II could be recognized as an underlying explanation for different effects between nPS and nPS-COOH. This study first provides a novel approach to assess the ecological risks of NPs at an integrated multilevel.


Subject(s)
Photosynthesis , Polystyrenes , Water Pollutants, Chemical , Photosynthesis/drug effects , Polystyrenes/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , Chlorophyll/metabolism , Microplastics/toxicity , Chloroplasts/drug effects , Chloroplasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL