Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMJ Open ; 13(6): e072904, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37355276

ABSTRACT

OBJECTIVES: Metformin is associated with osteoblastogenesis and osteoclastogenesis. This study aims to investigate the impacts of metformin therapy on bone mineral density (BMD) and bone turnover markers. DESIGN: Systematic review and meta-analysis of randomised controlled trials. METHODS: Searches were carried out in PubMed, EMBASE, Web of science, Cochrane library, ClinicalTrials.gov from database inception to 26 September 2022. Two review authors assessed trial eligibility in accordance with established inclusion criteria. The risk of bias was assessed using the Cochrane Risk of Bias tool (RoB V.2.0). Data analysis was conducted with Stata Statistical Software V.16.0 and Review Manager Software V.5.3. RESULTS: A total of 15 studies with 3394 participants were identified for the present meta-analysis. Our pooled results indicated that metformin had no statistically significant effects on BMD at lumbar spine (SMD=-0.05, 95% CI=-0.19 to 0.09, p=0.47, participants=810; studies=7), at femoral (MD=-0.01 g/cm2, 95% CI=-0.04 to 0.01 g/cm2, p=0.25, participants=601; studies=3) and at hip (MD=0.01 g/cm2, 95% CI=-0.02 to 0.03 g/cm2, p=0.56, participants=634; studies=4). Metformin did not lead to significant change in osteocalcin, osteoprotegerin and bone alkaline phosphatase. Metformin induced decreases in N-terminal propeptide of type I procollagen (MD=-6.09 µg/L, 95% CI=-9.38 to -2.81 µg/L, p=0.0003, participants=2316; studies=7) and C-terminal telopeptide of type I collagen (MD=-55.80 ng/L, 95% CI=-97.33 to -14.26 ng/L, p=0.008, participants=2325; studies=7). CONCLUSION: This meta-analysis indicated that metformin had no significant effect on BMD. Metformin decreased some bone turnover markers as N-terminal propeptide of type I procollagen and C-terminal telopeptide of type I collagen. But the outcomes should be interpreted with caution due to several limitations.


Subject(s)
Bone Density , Metformin , Humans , Metformin/pharmacology , Lumbar Vertebrae , Bone Remodeling
2.
Nat Commun ; 6: 7011, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25901840

ABSTRACT

Cascade reactions initiated by radical addition to alkynes are synthetically very attractive because they enable access to highly complex molecular skeletons in only few synthetic steps under usually mild conditions. Here we report a general radical cascade reaction of alkynes, N-fluoroarylsulfonimides and alcohols, enabling the efficient synthesis of important α-amino-α-aryl ketones from readily available starting materials via a single operation. During this process, the highly regioselective nitrogen-centred radical addition to internal and terminal alkynes generating vinyl radicals and the next explicit migration of aryl group from the nitrogen source lead the following efficient desulfonylation, oxygenation, and semi-pinacol rearrangement. In addition, the semi-pinacol rearrangement precursors, α-alkyloxyl-α,α-diaryl imines, could also be efficiently obtained under milder conditions. This methodology might open a new entry for designing intermolecular radical cascade reaction of alkynes.

SELECTION OF CITATIONS
SEARCH DETAIL