Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Genomics ; 116(4): 110871, 2024 07.
Article in English | MEDLINE | ID: mdl-38806102

ABSTRACT

Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.


Subject(s)
Cold-Shock Response , DNA Methylation , Gene Expression Regulation, Plant , Manihot , Plant Proteins , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Epigenesis, Genetic , Plant Leaves/genetics , Plant Leaves/metabolism , DNA Transposable Elements , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Theor Appl Genet ; 137(2): 40, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296887

ABSTRACT

KEY MESSAGE: Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.


Subject(s)
Gossypium , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Cotton Fiber , Phenotype , Plant Structures/metabolism , Gene Expression Regulation, Plant
3.
Plant J ; 117(2): 573-589, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897092

ABSTRACT

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Subject(s)
Chromatin , Saccharum , Succinates , Saccharum/genetics , Saccharum/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Plant Breeding , Genomics , Polyploidy
4.
BMC Genomics ; 24(1): 726, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041011

ABSTRACT

BACKGROUND: Pre-exposing plants to abiotic stresses can induce stress memory, which is crucial for adapting to subsequent stress exposure. Although numerous genes involved in salt stress response have been identified, the understanding of memory responses to salt stress remains limited. RESULTS: In this study, we conducted physiological and transcriptional assays on maize plants subjected to recurrent salt stress to characterize salt stress memory. During the second exposure to salt stress, the plants exhibited enhanced salt resistance, as evidenced by increased proline content and higher POD and SOD activity, along with decreased MDA content, indicative of physiological memory behavior. Transcriptional analysis revealed fewer differentially expressed genes and variations in response processes during the second exposure compared to the first, indicative of transcriptional memory behavior. A total of 2,213 salt stress memory genes (SMGs) were identified and categorized into four response patterns. The most prominent group of SMGs consisted of genes with elevated expression during the first exposure to salt stress but reduced expression after recurrent exposure to salt stress, or vice versa ([+ / -] or [- / +]), indicating that a revised response is a crucial process in plant stress memory. Furthermore, nine transcription factors (TFs) (WRKY40, WRKY46, WRKY53, WRKY18, WRKY33, WRKY70, MYB15, KNAT7, and WRKY54) were identified as crucial factors related to salt stress memory. These TFs regulate over 53% of SMGs, underscoring their potential significance in salt stress memory. CONCLUSIONS: Our study demonstrates that maize can develop salt stress memory, and the genes identified here will aid in the genetic improvement of maize and other crops.


Subject(s)
Transcriptome , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics
5.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445787

ABSTRACT

The functional annotation of genomes, including chromatin modifications, is essential to understand the intricate architecture of chromatin and the consequential gene regulation. However, such an annotation remains limited for cotton genomes. Here, we conducted chromatin profiling in a wild allotetraploid cotton Gossypium darwinii (AD genome) by integrating the data of histone modification, transcriptome, and chromatin accessibility. We revealed that the A subgenome showed a higher level of active histone marks and lower level of repressive histone marks than the D subgenome, which was consistent with the expression bias between the two subgenomes. We show that the bias in transcription and histone modification between the A and D subgenomes may be caused by genes unique to the subgenome but not by homoeologous genes. Moreover, we integrate histone marks and open chromatin to define six chromatin states (S1-S6) across the cotton genome, which index different genomic elements including genes, promoters, and transposons, implying distinct biological functions. In comparison to the domesticated cotton species, we observed that 23.2% of genes in the genome exhibit a transition from one chromatin state to another at their promoter. Strikingly, the S2 (devoid of epigenetic marks) to S3 (enriched for the mark of open chromatin) was the largest transition group. These transitions occurred simultaneously with changes in gene expression, which were significantly associated with several domesticated traits in cotton. Collectively, our study provides a useful epigenetic resource for research on allopolyploid plants. The domestication-induced chromatin dynamics and associated genes identified here will aid epigenetic engineering, improving polyploid crops.


Subject(s)
Gossypium , Histones , Gossypium/genetics , Histones/genetics , Genome, Plant , Domestication , Epigenesis, Genetic , Chromatin/genetics
6.
Funct Integr Genomics ; 23(2): 197, 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37270747

ABSTRACT

Cottonseed is an invaluable resource, providing protein, oil, and abundant minerals that significantly contribute to the well-being and nutritional needs of both humans and livestock. However, cottonseed also contains a toxic substance called gossypol, a secondary metabolite in Gossypium species that plays an important role in cotton plant development and self-protection. Herein, genome-wide analysis and characterization of the terpene synthase (TPS) gene family identified 304 TPS genes in Gossypium. Bioinformatics analysis revealed that the gene family was grouped into six subgroups TPS-a, TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g. Whole-genome, segmental, and tandem duplication contributed to the evolution of TPS genes. According to the analysis of selection pressure, it was predicted that TPS genes experience predominantly negative selection, with positive selection occurring subsequently. RT-qPCR analysis in TM-1 and CRI-12 lines revealed GhTPS48 gene as the candidate gene for silencing experiments. To summarize, comprehensive genome-wide studies, RT-qPCR, and gene silencing experiments have collectively demonstrated the involvement of the TPS gene family in the biosynthesis of gossypol in cotton.


Subject(s)
Alkyl and Aryl Transferases , Gossypol , Humans , Gossypol/metabolism , Gossypium/genetics , Cottonseed Oil/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
7.
BMC Plant Biol ; 23(1): 260, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193952

ABSTRACT

BACKGROUND: The adaptation of plants to cold stress involves changes in gene expression profiles that are associated with epigenetic regulation. Although the three-dimensional (3D) genome architecture is considered an important epigenetic regulator, the role of 3D genome organization in the cold stress response remains unclear. RESULTS: In this study, we developed high-resolution 3D genomic maps using control and cold-treated leaf tissue of the model plant Brachypodium distachyon using Hi-C to determine how cold stress affects the 3D genome architecture. We generated ~ 1.5 kb resolution chromatin interaction maps and showed that cold stress disrupts different levels of chromosome organization, including A/B compartment transition, a reduction in chromatin compartmentalization and the size of topologically associating domains (TADs), and loss of long-range chromatin loops. Integrating RNA-seq information, we identified cold-response genes and revealed that transcription was largely unaffected by the A/B compartment transition. The cold-response genes were predominantly localized in compartment A. In contrast, transcriptional changes are required for TAD reorganization. We demonstrated that dynamic TAD events were associated with H3K27me3 and H3K27ac state alterations. Moreover, a loss of chromatin looping, rather than a gain of looping, coincides with alterations in gene expression, indicating that chromatin loop disruption may play a more important role than loop formation in the cold-stress response. CONCLUSIONS: Our study highlights the multiscale 3D genome reprogramming that occurs during cold stress and expands our knowledge of the mechanisms underlying transcriptional regulation in response to cold stress in plants.


Subject(s)
Brachypodium , Chromatin , Chromatin/genetics , Cold-Shock Response/genetics , Brachypodium/genetics , Epigenesis, Genetic , Chromosomes
8.
Front Plant Sci ; 14: 1092616, 2023.
Article in English | MEDLINE | ID: mdl-36875590

ABSTRACT

Uncovering the underlying mechanism of salt tolerance is important to breed cotton varieties with improved salt tolerance. In this study, transcriptome and proteome sequencing were performed on upland cotton (Gossypium hirsutum L.) variety under salt stress, and integrated analysis was carried out to exploit salt-tolerance genes in cotton. Enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on differentially expressed genes (DEGs) obtained from transcriptome and proteome sequencing. GO enrichment was carried out mainly in the cell membrane, organelle, cellular process, metabolic process, and stress response. The expression of 23,981 genes was changed in physiological and biochemical processes such as cell metabolism. The metabolic pathways obtained by KEGG enrichment included glycerolipid metabolism, sesquiterpene and triterpenoid biosynthesis, flavonoid production, and plant hormone signal transduction. Combined transcriptome and proteome analysis to screen and annotate DEGs yielded 24 candidate genes with significant differential expression. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the candidate genes showed that two genes (Gh_D11G0978 and Gh_D10G0907) responded significantly to the induction of NaCl, and these two genes were further selected as target genes for gene cloning and functional validation through virus-induced gene silencing (VIGS). The silenced plants exhibited early wilting with a greater degree of salt damage under salt treatment. Moreover, they showed higher levels of reactive oxygen species (ROS) than the control. Therefore, we can infer that these two genes have a pivotal role in the response to salt stress in upland cotton. The findings in this research will facilitate the breeding of salt tolerance cotton varieties that can be grown on saline alkaline lands.

9.
Chromosome Res ; 31(2): 12, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36971835

ABSTRACT

Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.


Subject(s)
Gossypium , Retroelements , Gossypium/genetics , Australia , Centromere/genetics
10.
Proc Natl Acad Sci U S A ; 119(44): e2209743119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279429

ABSTRACT

Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a "genome shock", leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (Gossypium hirsutum and Gossypium barbadense, AADD) and its extant AA (Gossypium arboreum) and DD (Gossypium raimondii) progenitors. We observed distinct DHS distributions between G. arboreum and G. raimondii. In contrast, the DHSs of the two subgenomes of G. hirsutum and G. barbadense showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids Gossypium darwinii and G. hirsutum var. yucatanense, but absent from a resynthesized hybrid of G. arboreum and G. raimondii, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative cis-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.


Subject(s)
Gossypium , Histones , Chromatin/genetics , Deoxyribonuclease I , DNA Transposable Elements , Gossypium/genetics , Histones/genetics
11.
Sensors (Basel) ; 22(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684759

ABSTRACT

Vehicle-infrastructure cooperative perception is an ingenious way to eliminate environmental perception blind areas of connected and autonomous vehicles (CAVs). However, if the infrastructure transmits all environmental information to the nearby CAVs, the transmission load is so heavy that it causes a waste of network resources, such as time and bandwidth, because parts of the information are redundant for the CAVs. It is an efficient manner for the infrastructure to merely transmit the information about objects which cannot be perceived by the CAVs. Therefore, the infrastructure needs to predict whether an object is perceptible for a CAV. In this paper, a machine-leaning-based model is established to settle this problem, and a data filter is also designed to enhance the prediction accuracy in various scenarios. Based on the proposed model, the infrastructure transmits the environmental information selectively, which significantly reduces the transmission load. The experiments prove that the prediction accuracy of the model achieves up to 95%, and the transmission load is reduced by 55%.


Subject(s)
Motor Vehicles , Perception , Data Collection
13.
Chromosome Res ; 30(1): 29-41, 2022 03.
Article in English | MEDLINE | ID: mdl-34988746

ABSTRACT

Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.


Subject(s)
Saccharum , Chromosome Mapping , Cytogenetic Analysis , Genome, Plant , In Situ Hybridization, Fluorescence , Plant Breeding , Saccharum/genetics
14.
Front Plant Sci ; 12: 731664, 2021.
Article in English | MEDLINE | ID: mdl-34512706

ABSTRACT

The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.

15.
Genome ; 64(11): 985-995, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34253086

ABSTRACT

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.


Subject(s)
Cotton Fiber , Genes, Plant , Gossypium , Gene Expression Profiling , Gossypium/genetics , Quantitative Trait Loci , Transcriptome
16.
Plant J ; 106(3): 616-629, 2021 05.
Article in English | MEDLINE | ID: mdl-33547688

ABSTRACT

Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.


Subject(s)
Centromere/genetics , DNA, Satellite/genetics , Saccharum/genetics , Tandem Repeat Sequences/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Ploidies , Retroelements/genetics
17.
Plant Cell ; 32(8): 2457-2473, 2020 08.
Article in English | MEDLINE | ID: mdl-32471863

ABSTRACT

Deep sequencing of DNase-I treated chromatin (DNase-seq) can be used to identify DNase I-hypersensitive sites (DHSs) and facilitates genome-scale mining of de novo cis-regulatory DNA elements. Here, we adapted DNase-seq to generate genome-wide maps of DHSs using control and cold-treated leaf, stem, and root tissues of three widely studied grass species: Brachypodium distachyon, foxtail millet (Setaria italica), and sorghum (Sorghum bicolor). Functional validation demonstrated that 12 of 15 DHSs drove reporter gene expression in transiently transgenic B. distachyon protoplasts. DHSs under both normal and cold treatment substantially differed among tissues and species. Intriguingly, the putative DHS-derived transcription factors (TFs) are largely colocated among tissues and species and include 17 ubiquitous motifs covering all grass taxa and all tissues examined in this study. This feature allowed us to reconstruct a regulatory network that responds to cold stress. Ethylene-responsive TFs SHINE3, ERF2, and ERF9 occurred frequently in cold feedback loops in the tissues examined, pointing to their possible roles in the regulatory network. Overall, we provide experimental annotation of 322,713 DHSs and 93 derived cold-response TF binding motifs in multiple grasses, which could serve as a valuable resource for elucidating the transcriptional networks that function in the cold-stress response and other physiological processes.


Subject(s)
Cold Temperature , Deoxyribonuclease I/metabolism , Genome, Plant , Poaceae/genetics , Chromatin/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Gene Regulatory Networks , Nucleotide Motifs/genetics , Organ Specificity/genetics , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Stress, Physiological/genetics , Transcription Initiation Site
18.
Theor Appl Genet ; 133(1): 187-199, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31587087

ABSTRACT

KEY MESSAGE: A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Genome, Plant , Saccharum/genetics , Ecotype , Gene Rearrangement/genetics , Genetics, Population , In Situ Hybridization, Fluorescence , Karyotyping , Metaphase/genetics , Phylogeny , Sequence Analysis, DNA , Time Factors
19.
Chromosoma ; 129(1): 45-55, 2020 03.
Article in English | MEDLINE | ID: mdl-31848693

ABSTRACT

Modern sugarcane cultivars are highly polyploid and derived from the hybridization of Saccharum officinarum and S. spontaneum, thus leading to singularly complex genomes. The complex genome has hindered the study of genomic structures. Here, we adopted a computational strategy to isolate highly repetitive and abundant sequences in either S. officinarum or S. spontaneum and isolated four S. spontaneum-enriched retrotransposons. Fluorescence in situ hybridization (FISH) assays with these repetitive DNA sequences generated whole-genome painting signals for S. spontaneum but not for S. officinarum. We demonstrated that these repetitive sequence-based probes distinguish the parental S. spontaneum genome in hybrids derived from crosses between it and S. officinarum. A cytological analysis of 14 modern sugarcane cultivars revealed that the percentages of chromosomes with introgressive S. spontaneum fragments ranged from 11.9 to 40.9% and substantially exceeded those determined for previously investigated cultivars (5-13%). The comparatively higher percentages of introgressive S. spontaneum fragments detected in the aforementioned cultivars indicate frequent recombination between parental genomes. Here, we present the application of our strategy to isolate species-specific cytological markers. This information may help to elucidate complex plant genomic structures and trace their evolutionary histories.


Subject(s)
Genome, Plant , Genomics , Retroelements , Saccharum/genetics , Chromosome Mapping , Chromosomes, Plant , Computational Biology/methods , Genomics/methods , In Situ Hybridization, Fluorescence , Karyotype
20.
Nat Genet ; 51(4): 739-748, 2019 04.
Article in English | MEDLINE | ID: mdl-30886425

ABSTRACT

Allotetraploid cotton is an economically important natural-fiber-producing crop worldwide. After polyploidization, Gossypium hirsutum L. evolved to produce a higher fiber yield and to better survive harsh environments than Gossypium barbadense, which produces superior-quality fibers. The global genetic and molecular bases for these interspecies divergences were unknown. Here we report high-quality de novo-assembled genomes for these two cultivated allotetraploid species with pronounced improvement in repetitive-DNA-enriched centromeric regions. Whole-genome comparative analyses revealed that species-specific alterations in gene expression, structural variations and expanded gene families were responsible for speciation and the evolutionary history of these species. These findings help to elucidate the evolution of cotton genomes and their domestication history. The information generated not only should enable breeders to improve fiber quality and resilience to ever-changing environmental conditions but also can be translated to other crops for better understanding of their domestication history and use in improvement.


Subject(s)
Genome, Plant/genetics , Gossypium/genetics , Chromosomes, Plant/genetics , Cotton Fiber , Domestication , Gene Expression/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Repetitive Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL