Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Animals (Basel) ; 14(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38396610

ABSTRACT

Prolactin is essential for mammary gland development and lactation. Progesterone also induces ductal branching and alveolar formation via initial secretory differentiation within the mammary gland. Herein, we aimed to evaluate the role of progesterone as a prolactin substitute for the production of cell-cultured milk components in MAC-T cells. Cells were treated with various hormones such as prolactin (PRL), progesterone (P4), 17ß-estradiol (E2), cortisol (COR), and insulin (INS) for 5 d. MAC-T cells cultured in a P4 differentiation media (2500 ng/mL of P4, 25 ng/mL of E2, 25 ng/mL of COR, and 25 ng/mL of INS) showed similar levels of E74-like factor 5 (Elf5) and milk component synthesis (α-casein, ß-casein, α-lactalbumin, ß-lactoglobulin, and triglycerides) compared to those cultured in a PRL differentiation media (5000 ng/mL of PRL, 500 ng/mL of CORT, and 50 ng/mL of INS). The levels of α-casein and triglycerides in the optimal P4 differentiation media were present at comparable levels to those in the PRL differentiation media. Our results demonstrated that P4 induces the activation of Elf5 and the synthesis of milk components in MAC-T cells, similar to PRL. Therefore, P4 may be used as an effective substitute of PRL for cell-cultured milk production in in vitro frameworks.

2.
Int J Biol Macromol ; 257(Pt 1): 128664, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065458

ABSTRACT

Incorporation of structured liquid oil within plant-based patties can be achieved through the utilization of food-grade Pickering emulsion (PE). Therefore, the aim of this study was to evaluate the quality characteristics of PE and its application in plant-based patty. The PEs were formulated using sunflower oil (SO), polysaccharides and protein, and the specific ratios employed were as following: methylcellulose (MC) 2 % only (MP0); MC 1.5 % + pea protein isolate (PPI) 0.5 % (MP1); MC 1 % + PPI 1 % (MP2); xanthan gum (XG) 2 % only (XP0); XG 1.5 % + PPI 0.5 % (XP1); XG 1 % + PPI 1 % (XP2). MP0 and MP1 were unstable as PEs, whereas MP2 and XP groups (XP0, XP1, and XP2) exhibited stability as a PE. In addition, MP2 and all XP groups showed increased oil binding capacity, hydrophobic interaction, thermal stability, crystallization, rheological properties, and oxidative stability, compared to MP0 and MP1. In PE-applied plant-based patties, MP2 and all XP groups had significantly lower cooking loss and higher emulsion stability than SO. Particularly, MP2-employed plant-based patties exhibited significantly improved textural and sensory properties. Therefore, our data suggest that PEs with methylcellulose and pea protein isolate could be an effective replacement of plant oil in plant-based meat analogs.


Subject(s)
Pea Proteins , Emulsions/chemistry , Cooking , Oxidation-Reduction , Methylcellulose
3.
Foods ; 12(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37893624

ABSTRACT

Polysaccharides have been used in the production of plant-based meat analogs to replicate the texture of real meat. However, there has been no study that comprehensively compares the effects of different polysaccharides, and a limited number of polysaccharides have been evaluated. Thus, we aimed to identify the most suitable polysaccharide and concentration for plant-based patties. Plant-based patties were manufactured by blending different concentrations (0%, 1%, and 2%) of six polysaccharides with other ingredients, and the quality characteristics and sensory properties were evaluated. The L* values of plant-based patties reduced during the cooking process resembled the color change of beef patty (BP). In particular, a 2% κ-carrageenan-added patty (Car-2) exhibited the lowest L* value among the plant-based patties, measured at 44.05 (p < 0.05). Texture parameters exhibited high values by adding 2% κ-carrageenan and locust bean gum, which was close to BP. In the sensory evaluation, Car-2 showed higher scores for sensory preferences than other plant-based patties. Based on our data, incorporating 2% κ-carrageenan could offer a feasible way of crafting plant-based meat analogs due to its potential to enhance texture and flavor. Further studies are required to evaluate the suitability of polysaccharides in various types of plant-based meat analogs.

4.
Anim Biosci ; 36(11): 1757-1768, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641829

ABSTRACT

OBJECTIVE: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. METHODS: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17ß-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. RESULTS: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17ß-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. CONCLUSION: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

5.
Foods ; 11(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053977

ABSTRACT

Chicken meat is a popular food commodity that is widely consumed worldwide. However, the shelf-life or quality maintenance of chicken meat is a major concern for industries because of spoilage by microbial growth. The aim of this study was to evaluate the effects of chitosan and duck fat-based emulsion coatings on the quality characteristics and microbial stability of chicken meat during refrigerated storage. The coated chicken meat samples were as follows: control (non-coated), DFC0 (coated with duck fat), DFC0.5 (coated with duck fat and 0.5% chitosan), DFC1 (coated with duck fat and 1% chitosan), DFC2 (coated with duck fat and 2% chitosan), and SOC2 (coated with soybean oil and 2% chitosan). The results showed that the apparent viscosity and coating rate were higher in DFC2 than in other groups. Physicochemical parameters (pH, color, and Warner-Bratzler shear force) were better in DFC2 than those in other groups during 15 days of storage. Moreover, DFC2 delayed lipid oxidation, protein deterioration, and growth of microorganisms during storage. These data suggest that chitosan-supplemented duck fat-based emulsion coating could be used to maintain the quality of raw chicken meat during refrigerated storage.

6.
Toxics ; 9(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34941788

ABSTRACT

Poly(ethylene glycol) diglycidyl ether (PEGDE) is widely used to cross-link polymers, particularly in the pharmaceutical and biomaterial sectors. However, the subcutaneous toxicity of PEGDE has not yet been assessed. PEGDE samples (500-40,000 µg/mouse) were subcutaneously injected into the paraspinal dorsum of BALB/c male mice. Cage-side observations were carried out with measurement of organ weight, body weight variation, and feed intake, as well as histopathological characterization on day 28 post-exposure. Mice that received 40,000 µg of PEGDE showed severe toxic response and had to be euthanized. Subcutaneous injection of PEGDE did not alter feed intake and organ weight; however, the body weight variation of mice injected with 20,000 µg of PEGDE was significantly lower than that of the other groups. Exposure to 10,000 and 20,000 µg of PEGDE induced epidermal ulcer formation and hair loss. The histology of skin tissue in mice administered with 20,000 µg of PEGDE showed re-epithelialized or unhealed wounds. However, the liver, spleen, and kidneys were histologically normal. Collectively, PEGDE, particularly above 10,000 µg/mouse, caused subcutaneous toxicity with ulceration, but no toxicity in the other organs. These results may indicate the optimal concentration of subcutaneously injected PEGDE.

SELECTION OF CITATIONS
SEARCH DETAIL
...