Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 14: 1130298, 2023.
Article in English | MEDLINE | ID: mdl-37547687

ABSTRACT

Water and fertilizer managements are the most common practices to maximize crop yields, and their long-term impact on soil microbial communities has been extensively studied. However, the initial response of microbes to fertilization and soil moisture changes remains unclear. In this study, the immediate effects of nitrogen (N)-fertilizer application and moisture levels on microbial community of paddy soils were investigated through controlled incubation experiments. Amplicon sequencing results revealed that moisture had a stronger influence on the abundance and community composition of total soil bacteria, as well as ammonia oxidizing-archaea (AOA) and -bacteria (AOB). Conversely, fertilizer application noticeably reduced the connectivity and complexity of the total bacteria network, and increasing moisture slightly exacerbated these effects. NH4+-N content emerged as a significant driving force for changes in the structure of the total bacteria and AOB communities, while NO3--N content played more important role in driving shifts in AOA composition. These findings indicate that the initial responses of microbial communities, including abundance and composition, and network differ under water and fertilizer managements. By providing a snapshot of microbial community structure following short-term N-fertilizer and water treatments, this study contributes to a better understanding of how soil microbes respond to long-term agriculture managements.

2.
Toxics ; 11(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36851013

ABSTRACT

The distribution and source of polychlorinated biphenyls (PCBs) pollution in the Beiluo River, the secondary tributary of the Yellow River, still remain unclear. With the purpose of determining the distribution, origins, and pollution levels of PCBs and their consequences on ecological risks, the concentrations of 27 PCBs at 17 locations in the sediments of the Beiluo River were examined in this study. The results showed that the mass concentrations of ∑PCBs in the sediment ranged from 0.12 to 1.25 ng∙g-1 (DW), with the highest point at sampling site B13 downstream of the river. Compared to most river sediments, both domestically and internationally, the concentration of PCBs in the sediment of the Beiluo River was at a low level, with 10-PCB and 6-PCB as the main components, indicating that the PCBs that are difficult to volatilise and degrade are more likely to remain in the sediment. The origins of PCBs in the sediments of the Beiluo River were examined by using positive matrix factorisation (PMF). The results revealed that the contamination of PCBs in the sediments of the Beiluo River mainly resulted from industrial emissions, technical PCB mixtures, and coal and wood combustion. The results of the ecological risk assessment indicated that PCBs in the sediments of the study area rarely contribute to adverse biological effects and the potential low risk to the environment.

3.
J Environ Sci (China) ; 127: 82-90, 2023 May.
Article in English | MEDLINE | ID: mdl-36522109

ABSTRACT

Exposure to triclosan (TCS) has been reported to reduce photosynthetic pigments, suppress photosynthesis, and inhibit growth in both prokaryotic and eukaryotic algae including Anabaena flos-aquae (a model cyanobacterium). In particular, cyanobacteria are more sensitive to TCS toxicity compared to eukaryotic algae possibly due to the structural similarity to bacteria (target organisms); however, whether TCS exerts its toxicity to cyanobacteria by targeting signaling pathways of fatty acid biosynthesis as in bacteria remains virtually unknown, particularly at environmental exposure levels. With the complete genome sequence of A. flos-aquae presented in this study, the transcriptomic alterations and potential toxic mechanisms in A. flos-aquae under TCS stress were revealed. The growth, pigments and photosynthetic activity of A. flos-aquae were markedly suppressed following a 7-day TCS exposure at 0.5 µg/L but not 0.1 µg/L (both concentrations applied are environmentally relevant). The transcriptomic sequencing analysis showed that signaling pathways, such as biofilm formation - Pseudomonas aeruginosa, two-component system, starch and sucrose metabolism, and photosynthesis were closely related to the TCS-induced growth inhibition in the 0.5 µg/L TCS treatment. Photosynthesis systems and potentially two-component system were identified to be sensitive targets of TCS toxicity in A. flos-aquae. The present study provides novel insights on TCS toxicity at the transcriptomic level in A. flos-aquae.


Subject(s)
Cyanobacteria , Dolichospermum flos-aquae , Triclosan , Dolichospermum flos-aquae/metabolism , Triclosan/toxicity , Transcriptome , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL