Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328180

ABSTRACT

Optimization of antibiotic therapy has been hindered by our dearth of understanding on the mechanism of the host-pathogen-drug interactions. Here, we employed dual RNA-sequencing to examine transcriptomic perturbations in response to polymyxin B in a co-culture infection model of Acinetobacter baumannii and human macrophages. Our findings revealed that polymyxin B treatment induced significant transcriptomic response in macrophage-interacting A. baumannii , exacerbating bacterial oxidative stress, disrupting metal homeostasis, affecting osmoadaptation, triggering stringent stress response, and influencing pathogenic factors. Moreover, infected macrophages adapt heme catabolism, coagulation cascade, and hypoxia-inducible signaling to confront bacterial invasion. Disrupting rcnB , ompW , and traR/dksA genes in A. baumannii impairs metal homeostasis, osmotic stress defense and stringent responses, thereby enhancing antibacterial killing by polymyxin. These findings shed light on the global stress adaptations at the network level during host-pathogen-drug interactions, revealing promising therapeutic targets for further investigation. IMPORTANCE: In the context of the development of bacterial resistance during the course of antibiotic therapy, the role of macrophages in shaping bacterial response to antibiotic killing remains enigmatic. Herein we employed dual RNA-sequencing and an in vitro tripartite model to delve into the unexplored transcriptional networks of the Acinetobacter baumannii -macrophage-polymyxin axis. Our findings uncovered the potential synergy between macrophages and polymyxin B which appear to act in co-operation to disrupt multiple stress tolerance mechanisms in A. baumannii . Notably, we discovered the critical roles of bacterial nickel/cobalt homeostasis ( rcnB family), osmotic stress defense ( ompW family), and stringent response regulator ( traR/dksA C4-type zinc finger) in tolerating the last-line antibiotic polymyxin B. Our findings may lead to potential targets for the development of novel therapeutics against the problematic pathogen A. baumannii .

2.
Small ; 20(6): e2305052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798622

ABSTRACT

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Subject(s)
Nanoparticles , Polymyxin B , Polymyxin B/pharmacology , Liposomes/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Klebsiella pneumoniae , Polysaccharides, Bacterial/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
3.
Proteomics ; : e2300087, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059892

ABSTRACT

The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1ß. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.

4.
Curr Biol ; 33(24): 5355-5367.e5, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37995699

ABSTRACT

Soybean (Glycine max) is a crop with high demand for molybdenum (Mo) and typically requires Mo fertilization to achieve maximum yield potential. However, the genetic basis underlying the natural variation of Mo concentration in soybean and its impact on soybean agronomic performance is still poorly understood. Here, we performed a genome-wide association study (GWAS) to identify GmMOT1.1 and GmMOT1.2 that drive the natural variation of soybean Mo concentration and confer agronomic traits by affecting auxin synthesis. The soybean population exhibits five haplotypes of the two genes, with the haplotype 5 demonstrating the highest expression of GmMOT1.1 and GmMOT1.2, as well as the highest transport activities of their proteins. Further studies showed that GmMOT1.1 and GmMOT1.2 improve soybean yield, especially when cultivated in acidic or slightly acidic soil. Surprisingly, these two genes contribute to soybean growth by enhancing the activity of indole-3-acetaldehyde (IAAld) aldehyde oxidase (AO), leading to increased indole-3-acetic acid (IAA) synthesis, rather than being involved in symbiotic nitrogen fixation or nitrogen assimilation. Furthermore, the geographical distribution of five haplotypes in China and their correlation with soil pH suggest the potential significance of GmMOT1.1 and GmMOT1.2 in soybean breeding strategies.


Subject(s)
Glycine max , Molybdenum , Glycine max/genetics , Molybdenum/metabolism , Genome-Wide Association Study , Plant Breeding , Indoleacetic Acids/metabolism , Soil
5.
Nat Plants ; 9(12): 1968-1977, 2023 12.
Article in English | MEDLINE | ID: mdl-37932483

ABSTRACT

Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.


Subject(s)
Biological Evolution , Ferns , Phylogeny , Lipids , Ferns/genetics , Seeds/genetics
6.
Nat Plants ; 9(10): 1749-1759, 2023 10.
Article in English | MEDLINE | ID: mdl-37653341

ABSTRACT

Cell-cell junctions are essential for multicellular organisms to maintain nutrient homoeostasis. A plant-type tight junction, the Casparian strip (CS)-Casparian strip membrane domain (CSD) that seals the paracellular space between adjacent endodermal cells, has been known for more than one hundred years. However, the molecular basis of this structure remains unknown. Here we report that a new family of proteins containing a glycine/alanine/proline-rich domain, a lectin domain and a secretory signal peptide (GAPLESS) mediates tethering of the plasma membrane to the CS in rice. The GAPLESS proteins are specifically localized in the CS of root endodermal cells, and loss of their functions results in a disabled cell-cell junction and disrupted nutrient homoeostasis. The GAPLESS protein forms a tight complex with OsCASP1 in the plasma membrane, thereby mediating the CS-CSD junction. This study provides valuable insights into the junctional complex of plant endodermal cells, shedding light on our understanding of nutrient homoeostasis in crops and the cell junctions of eukaryotes.


Subject(s)
Arabidopsis , Oryza , Oryza/genetics , Oryza/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Homeostasis , Nutrients , Plant Roots/metabolism
7.
Access Microbiol ; 5(6)2023.
Article in English | MEDLINE | ID: mdl-37424541

ABSTRACT

Clitoria ternatea flowers are rich in anthocyanins and possess various biological activities. Specifically, the antibacterial mechanism of action of C. ternatea anthocyanins remains unknown and was investigated in Escherichia coli . A time-kill assay was used to assess the antibacterial activity and the metabolic perturbations in E. coli were investigated utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Pathway analyses were carried out for metabolites showing ≥2-fold changes. The anthocyanin fraction remarkably reduced the growth of E. coli at 4 h by 95.8 and 99.9 % at minimum inhibitory concentration (MIC) and 2× MIC, respectively. The anthocyanin fraction (MIC) had a bacteriostatic effect and was shown to have perturbed glycerophospholipids (1-acyl-sn-glycero-3-phosphoethanolamine, phosphatidylglycerol, diacylglycerol and cardiolipin), amino acids (valine, tyrosine and isoleucine) and energy (ubiquinone and NAD) metabolites at 1 and 4 h. This study demonstrated significant metabolic perturbations of the glycerophospholipid, amino acid and energy metabolism, with these being the key pathways involved in the bacteriostatic activity of anthocyanins from C. ternatea, which may have promise as bacteriostatic agents for E. coli -related infections.

8.
Int J Antimicrob Agents ; 62(3): 106902, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37380093

ABSTRACT

OBJECTIVES: Antimicrobial resistance is a major global threat. Because of the stagnant antibiotic pipeline, synergistic antibiotic combination therapy has been proposed to treat rapidly emerging multidrug-resistant (MDR) pathogens. We investigated antimicrobial synergy of polymyxin/rifampicin combination against MDR Acinetobacter baumannii. METHODS: In vitro static time-kill studies were performed over 48 h at an initial inoculum of ∼107 CFU/mL against three polymyxin-susceptible but MDR A. baumannii isolates. Membrane integrity was examined at 1 and 4 h post-treatment to elucidate the mechanism of synergy. Finally, a semi-mechanistic PK/PD model was developed to simultaneously describe the time course of bacterial killing and prevention of regrowth by mono- and combination therapies. RESULTS: Polymyxin B and rifampicin alone produced initial killing against MDR A. baumannii but were associated with extensive regrowth. Notably, the combination showed synergistic killing across all three A. baumannii isolates with bacterial loads below the limit of quantification for up to 48 h. Membrane integrity assays confirmed the role of polymyxin-driven outer membrane remodelling in the observed synergy. Subsequently, the mechanism of synergy was incorporated into a PK/PD model to describe the enhanced uptake of rifampicin due to polymyxin-induced membrane permeabilisation. Simulations with clinically utilised dosing regimens confirmed the therapeutic potential of this combination, particularly in the prevention of bacterial regrowth. Finally, results from a neutropenic mouse thigh infection model confirmed the in vivo synergistic killing of the combination against A. baumannii AB5075. CONCLUSION: Our results showed that polymyxin B combined with rifampicin is a promising option to treat bloodstream and tissue infection caused by MDR A. baumannii and warrants clinical evaluations.


Subject(s)
Acinetobacter baumannii , Polymyxin B , Animals , Mice , Polymyxin B/pharmacology , Rifampin/pharmacology , Polymyxins/pharmacology , Drug Synergism , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
9.
EMBO Rep ; 24(1): e55542, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36394374

ABSTRACT

The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.


Subject(s)
Genome-Wide Association Study , Zea mays , Humans , Zea mays/genetics , Zea mays/metabolism , Zinc/metabolism , Plant Breeding , Seeds/genetics , Membrane Transport Proteins/genetics
12.
New Phytol ; 235(4): 1486-1500, 2022 08.
Article in English | MEDLINE | ID: mdl-35510797

ABSTRACT

Protein sorting is an essential biological process in all organisms. Trafficking membrane proteins generally relies on the sorting machinery of the Golgi apparatus. However, many proteins have been found to be delivered to target locations via Golgi-independent pathways, but the mechanisms underlying this delivery system remain unknown. Here, we report that Sec24C mediates the direct secretory trafficking of the phytochelatin transporters ABCC1 and ABCC2 from the endoplasmic reticulum (ER) to prevacuolar compartments (PVCs) in Arabidopsis thaliana. Genetic analysis showed that the sec24c mutants are hypersensitive to cadmium (Cd) and arsenic (As) treatments due to mislocalisation of ABCC1 and ABCC2, which results in defects in the vacuole compartmentalisation of the toxic metals. Furthermore, we found that Sec24C recognises ABCC1 and ABCC2 through direct interactions to mediate their exit from the ER to PVCs, which is independent of brefeldin A-sensitive post-Golgi trafficking pathway. These findings expand our understanding of Golgi-independent trafficking, which also provide key insights regarding the mechanism of tonoplast protein sorting and open a new perspective on the function of Sec24 proteins.


Subject(s)
Arabidopsis , Biological Phenomena , Arabidopsis/genetics , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport , Vacuoles/metabolism
13.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35502748

ABSTRACT

Adventitious roots (ARs) are an important type of plant root and display high phenotypic plasticity in response to different environmental stimuli. It is known that photoreceptors inhibit darkness-induced hypocotyl adventitious root (HAR) formation by directly stabilizing Aux/IAA proteins. In this study, we further report that phytochrome-interacting factors (PIFs) plays a central role in HAR initiation by simultaneously inducing the expression of genes involved in auxin biosynthesis, auxin transport and the transcriptional control of root primordium initiation. We found that, on the basis of their activity downstream of phytochrome, PIFs are required for darkness-induced HAR formation. Specifically, PIFs directly bind to the promoters of some genes involved in root formation, including auxin biosynthesis genes YUCCA2 (YUC2) and YUC6, the auxin influx carrier genes AUX1 and LAX3, and the transcription factors WOX5/7 and LBD16/29, to activate their expression. These findings reveal a previously uncharacterized transcriptional regulatory network underlying HAR formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hypocotyl/genetics , Hypocotyl/metabolism , Indoleacetic Acids/metabolism , Phytochrome/genetics , Plant Roots/genetics , Plant Roots/metabolism
14.
Nat Commun ; 13(1): 1625, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338128

ABSTRACT

The emergence of multidrug-resistant (MDR) Gram-negative pathogens is an urgent global medical challenge. The old polymyxin lipopeptide antibiotics (polymyxin B and colistin) are often the only therapeutic option due to resistance to all other classes of antibiotics and the lean antibiotic drug development pipeline. However, polymyxin B and colistin suffer from major issues in safety (dose-limiting nephrotoxicity, acute toxicity), pharmacokinetics (poor exposure in the lungs) and efficacy (negligible activity against pulmonary infections) that have severely limited their clinical utility. Here we employ chemical biology to systematically optimize multiple non-conserved positions in the polymyxin scaffold, and successfully disconnect the therapeutic efficacy from the toxicity to develop a new synthetic lipopeptide, structurally and pharmacologically distinct from polymyxin B and colistin. This resulted in the clinical candidate F365 (QPX9003) with superior safety and efficacy against lung infections caused by top-priority MDR pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae.


Subject(s)
Colistin , Polymyxin B , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Microbial Sensitivity Tests , Polymyxins/pharmacology , Polymyxins/therapeutic use , Pseudomonas aeruginosa
15.
PLoS Pathog ; 18(3): e1010308, 2022 03.
Article in English | MEDLINE | ID: mdl-35231068

ABSTRACT

The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Humans , Macrophages , Mice , Microbial Sensitivity Tests , Polymyxins/pharmacology , Proteomics
16.
Nat Commun ; 13(1): 343, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039508

ABSTRACT

A depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative 'superbugs' has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone. Confocal microscopy and neutron reflectometry suggest the superior polytherapy activity is achieved via a two-step process. Firstly, electrostatic interactions between polymyxin and lipid A initially destabilize the outer membrane. Subsequently, an influx of cubosomes results in further membrane disruption via a lipid exchange process. These findings demonstrate that nanoparticle-based polytherapy treatments may potentially serve as improved alternatives to the conventional use of drug-loaded lipid nanoparticles for the treatment of "superbugs".


Subject(s)
Drug Resistance, Multiple, Bacterial , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Drug Therapy, Combination , HEK293 Cells , Humans , Lipid Bilayers/chemistry , Microbial Sensitivity Tests , Microscopy, Confocal , Polymyxin B/pharmacology
17.
Comput Struct Biotechnol J ; 20: 485-495, 2022.
Article in English | MEDLINE | ID: mdl-35070170

ABSTRACT

Resistance to the last-line polymyxins is emerging in multidrug-resistant Klebsiella pneumoniae and phage therapy is a promising alternative. However, phage monotherapy often rapidly causes resistance and few studies have examined antibiotic-phage combinations against K. pneumoniae. Here, we investigated the combination of polymyxin B with a novel phage pK8 against an mcr-1-carrying polymyxin-resistant clinical isolate Kp II-503 (polymyxin B MIC, 8 mg/L). The phage genome was sequenced and bacterial metabolomes were analysed at 4 and 24 h following the treatment with polymyxin B (16 mg/L), phage pK8 (102 PFU/mL) and their combination. Minimal metabolic changes across 24 h were observed with polymyxin B alone; whereas a significant inhibition of the citrate cycle, pentose phosphate pathway, amino acid and nucleotide metabolism occurred with the phage-polymyxin combination at both 4 and 24 h, but with phage alone only at 4 h. The development of resistance to phage alone was associated with enhanced membrane lipid and decreased amino acid biosynthesis in Kp II-503. Notably, cAMP, cGMP and cCMP were significantly enriched (3.1-6.6 log2fold) by phage alone and the combination only at 4 h. This is the first systems pharmacology study to investigate the enhanced bacterial killing by polymyxin-phage combination and provides important mechanistic information on phage killing, resistance and antibiotic-phage combination in K. pneumoniae.

18.
Mol Plant ; 15(1): 167-178, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34530166

ABSTRACT

Nitrogen is an essential nutrient for plant growth and development, and plays vital roles in crop yield. Assimilation of nitrogen is thus fine-tuned in response to heterogeneous environments. However, the regulatory mechanism underlying this essential process remains largely unknown. Here, we report that a zinc-finger transcription factor, drought and salt tolerance (DST), controls nitrate assimilation in rice by regulating the expression of OsNR1.2. We found that loss of function of DST results in a significant decrease of nitrogen use efficiency (NUE) in the presence of nitrate. Further study revealed that DST is required for full nitrate reductase activity in rice and directly regulates the expression of OsNR1.2, a gene showing sequence similarity to nitrate reductase. Reverse genetics and biochemistry studies revealed that OsNR1.2 encodes an NADH-dependent nitrate reductase that is required for high NUE of rice. Interestingly, the DST-OsNR1.2 regulatory module is involved in the suppression of nitrate assimilation under drought stress, which contributes to drought tolerance. Considering the negative role of DST in stomata closure, as revealed previously, the positive role of DST in nitrogen assimilation suggests a mechanism coupling nitrogen metabolism and stomata movement. The discovery of this coupling mechanism will aid the engineering of drought-tolerant crops with high NUE in the future.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Nitrogen/metabolism , Oryza/growth & development , Oryza/genetics , Oryza/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Salt Tolerance/genetics , Transcription Factors/drug effects , Zinc Fingers/drug effects
19.
Sci Adv ; 7(36): eabh2450, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516912

ABSTRACT

Accumulation of iron in seeds is essential for both plant reproduction and human nutrition. Transport of iron to seeds requires the chelator nicotianamine (NA) to prevent its precipitation in the plant vascular tissues. However, how NA is transported to the apoplast for forming metal-NA complexes remains unknown. Here, we report that two members of the nitrate/peptide transporter family, NAET1 and NAET2, function as NA transporters required for translocation of both iron and copper to seeds. We show that NAET1 and NAET2 are predominantly expressed in the shoot and root vascular tissues and mediate secretion of NA out of the cells in resembling the release of neurotransmitters from animal synaptic vesicles. These findings reveal an unusual mechanism of transmembrane transport in plants and uncover a fundamental aspect of plant nutrition that has implications for improving food nutrition and human health.

20.
Front Microbiol ; 12: 682679, 2021.
Article in English | MEDLINE | ID: mdl-34163456

ABSTRACT

Three newly isolated fungal species, namely, Cerrena unicolor Han 849, Lenzites betulina Han 851, and Schizophyllum commune Han 881, isolated from their native habitats in Wulingshan National Nature Reserve of Hebei Province of northern China, were screened for laccase production with single or mixed lignocellulosic wastes. C. unicolor Han 849 was found to express the highest levels of laccase with single or mixed lignocellulosic wastes compared with L. betulina Han 851 and S. commune Han 881. The highest laccase activity from the mixed fungal culture of C. unicolor Han 849 and S. commune Han 881 or L. betulina Han 851 on Firmiana platanifolia was 1,373.12 ± 55.93 and 1,144.85 ± 34.97 U/L, respectively, higher than that from other tested conditions. L. betulina Han 851 or S. commune Han 881 mixed with other species was also helpful for accelerating laccase secretion due to reach maximum enzyme activity quickly. The treatment of mixing different species, including the mixture of two or three species, was obviously conducive to the improvement of laccase activity on Firmiana platanifolia. These results revealed that the fungal co-culture and the mixed lignocellulosic wastes contribute to the improvement of laccase activities and enhance laccase activities within a short period. These findings would be helpful for providing a new method for rapid production of low-cost laccase and for optimization of integrated industrial laccase production.

SELECTION OF CITATIONS
SEARCH DETAIL
...