Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(5): 1915-1934, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38192245

ABSTRACT

Ever-growing demands for zinc-air batteries (ZABs) call for the development of advanced electrocatalysts. Single-atom catalysts (SACs), particularly those for isolating non-noble metals (NBMs), are attracting great interest due to their merits of low cost, high atom utilization efficiency, structural tunability, and extraordinary activity. Rational design of advanced NBM SACs relies heavily on an in-depth understanding of reaction mechanisms. To gain a better understanding of the reaction mechanisms of oxygen electrocatalysis in ZABs and guide the design and optimization of more efficient NBM SACs, we herein organize a comprehensive review by summarizing the fundamental concepts in the field of ZABs and the recent advances in the reported NBM SACs. Moreover, the selection of NBM elements and supports of SACs and some effective strategies for enhancing the electrochemical performance of ZABs are illustrated in detail. Finally, the challenges and future direction in this field of ZABs are also discussed.

2.
Int J Biol Macromol ; 254(Pt 1): 127704, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898245

ABSTRACT

Chestnuts are a starchy food with a characteristic glutinous taste that is often used to assess their quality. In this study, our findings indicated that chestnuts with higher glutinous taste quality had lower amylose content and microcrystalline structures, as well as higher subcrystalline structures and relative crystallinity in both the raw and steamed starches. In the leached starch, chestnuts with higher glutinous taste quality had lower amylopectin B1 chains and microcrystalline structure, but higher amylopectin B2 chains, subcrystalline structure and relative crystallinity. These results suggest that amylose content, relative crystallinity, and amylopectin chain length distribution are important factors determining the glutinous taste quality of chestnuts. To further enhance our understanding of these factors, an sensory evaluation model was developed based on textural profile analysis parameters. This study provides valuable insights into the relationship between molecular structure of starch and the glutinous taste quality of starchy foods.


Subject(s)
Oryza , Starch , Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Molecular Structure , Taste , Oryza/chemistry
3.
Phys Chem Chem Phys ; 25(44): 30172-30187, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37930248

ABSTRACT

Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.

4.
Dalton Trans ; 52(38): 13452-13466, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37721115

ABSTRACT

The intercalation of H into Pd-based nanocatalysts plays a crucial role in optimizing the catalytic performance by tailoring the structural and electronic properties. We herein present a comprehensive review about the recent progress of interstitial hydrogen atom modified Pd-based nanocatalysts for various energy-related electrocatalytic reactions. Before systematically manifesting the great potential of Pd-based hydrides for electrocatalytic applications, we have briefly illustrated the synthesis strategies and corresponding mechanisms for the Pd-based hydrides. This is followed by a comprehensive discussion about the fundamentals and functions of H intercalation in tailoring their physicochemical and electrochemical properties. Subsequently, we focus on the widespread application of Pd-based hydrides for electrocatalytic reactions, with the emphasis on the role of H intercalation played in determining electrocatalytic performance. Finally, the future direction and perspectives regarding the development of more efficient Pd-based hydrides are also manifested.

5.
Nanoscale ; 15(33): 13487-13497, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37563956

ABSTRACT

Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed.

6.
Int J Biol Macromol ; 162: 922-930, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32592784

ABSTRACT

Starch digestibility can be decreased by phenolic acids. The physicochemical and digestive properties of high-amylose maize starch, normal maize starch (NMS) and waxy maize starch (WMS) complexed with caffeic acid (CA) were investigated to determine the effects of CA and amylose on starch digestibility. CA inhibited the activity of α-glucosidase and α-amylase in a dose-dependent manner. The inhibitory effect of CA on α-glucosidase was reversible and anti-competitive, while that on α-amylase was irreversible. With the increase of the amylose content in starches, the complexing index of starch-CA decreased, while the relative crystallinity increased. The crystallinity of all three starches decreased after incorporating CA, and the hydroxyl peak in the 1H-NMR spectrum of the WMS-CA complex increased significantly. The resistant starch content of the WMS-CA and NMS-CA complexes increased significantly compared with the control. The inhibitory effect of CA on amylolytic enzymes played a major role and the change of starch structure exhibited a minor role in the digestibility of the maize starch-CA complexes.


Subject(s)
Amylose/chemistry , Caffeic Acids/chemistry , Zea mays/chemistry , alpha-Amylases/chemistry
7.
Nat Prod Res ; 33(14): 2079-2087, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29897270

ABSTRACT

The objective of this study was to determine whether endophytic fungi, isolated from Kadsura angustifolia produce nigranoic acid and its highly oxygenated derivatives. From the 426 endophytic fungi screened, Trichoderma harzianum SWUKD3.1610 was detected to have a component with the same TLC R f value and HPLC retention time as authentic nigranoic acid. This component was further confirmed as nigranoic acid by investigating the chemical composition of the fungal extracts. Besides (1), one new triterpenoid, 7ß- schinalactone C (2), and two known minor compounds were isolated and characterized by HRESIMS, 1D and 2D NMR spectroscopic methods. Our study indicates that endophytic fungus may play an important role in increasing the quality of the crude drugs from Chinese medicinal plant K. angustifolia. This study is the first to isolate, characterize, and identify schitriterpenes-producing Trichoderma spp.


Subject(s)
Kadsura/microbiology , Trichoderma/metabolism , Triterpenes/metabolism , Chromatography, High Pressure Liquid , Plants, Medicinal/microbiology , Secondary Metabolism , Spectrometry, Mass, Electrospray Ionization , Trichoderma/isolation & purification , Triterpenes/analysis
8.
Phytochemistry ; 158: 56-66, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30476897

ABSTRACT

Highly oxygenated schitriterpenoids are interesting for study of their structures, bioactivities and synthesis. From Kadsura angustifolia fermented by an associated symbiotic endophytic fungus, Penicillium sp. SWUKD4.1850, nine undescribed triterpenoids, kadhenrischinins A-H, and 7ß-schinalactone C together with four known triterpenoids, henrischinins A and B, schinalactone C and nigranoic acid were isolated and established by the extensive 1D-, 2D-NMR, HR-ESI-MS and ECD data analysis. Except nigranoic acid, all these metabolites have been first detected in non-fermented K. angustifolia. Structurally, kadhenrischinins A-D belong to the relatively rare class of highly oxygenated schitriterpenoids that contain a unique 3-one-2-oxabicyclo [3,2,1]-octane motif, while kadhenrischinins E-H feature a cyclopentane ring in a side chain rarely found in the family Schisandraceae. These results indicated that fermentation of K. angustifolia with SWUKD4.1850 induced the production of highly oxygenated schitriterpenoids from nigranoic acid, which provided a guidance to obtain desired compounds from those plants initially thought not to produce. This is the first report on the fermentation of K. angustifolia medical plant and the first discovery of highly oxygenated schitriterpenoids by microbial technology.


Subject(s)
Kadsura/metabolism , Kadsura/microbiology , Penicillium/physiology , Triterpenes/chemistry , Triterpenes/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Drug Screening Assays, Antitumor , Endophytes/physiology , Fermentation , Hep G2 Cells , Humans , Kadsura/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Symbiosis , Triterpenes/pharmacology
9.
Front Microbiol ; 9: 2845, 2018.
Article in English | MEDLINE | ID: mdl-30524412

ABSTRACT

Fungal endophytes live widely inside plant tissues and some have been revealed to provide benefits to their host and ecological environment. Considering the fact that endophytes are engaged in remarkably stable long-term interactions with the host for their whole life cycle, it's conceivable that both partners have substantial influence on each other's metabolic processes. Here, we investigated the fermented products of an endophytic fungus Umbelopsis dimorpha SWUKD3.1410 grown on host-plant Kadsura angustifolia and wheat bran, respectively, to assess the impact of SWUKD3.1410 on the secondary metabolites of K. angustifolia. Twenty compounds (1-20) were isolated and identified as 11 schitriterpenoids (1-9, 17-18), two lignans (10, 20), two sesquiterpenoids (11-12), one trinorsesquiterpenoid (13), one monoterpene (14), one sterol (19), and two simple aromatic compounds (15-16) by the extensive 1D-, 2D-NMR and HR-ESI-MS data analysis. Except for nigranoic acid (1), compounds 2-19 have been firstly found from K. angustifolia. Of them, metabolites 2, 11, and 14 were identified to be new. Obtained results indicated that U. dimorpha SWUKD3.1410 could not only produce the same/similar components as its host does, and modify the host-plant components, but also enhance the production of these highly oxygenated schitriterpenoids/schinortriterpenoids in plants. This study suggested an interesting prospective for setting up alternative processing techniques to improve the quality of crude drugs derived from K. angustifolia and increase their values.

SELECTION OF CITATIONS
SEARCH DETAIL
...