Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(39): 26143-26151, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27618933

ABSTRACT

There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

2.
Sci Rep ; 5: 7708, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578322

ABSTRACT

Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

3.
Adv Mater ; 24(48): 6438-44, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23044900

ABSTRACT

An electrically tunable photonic crystal is developed utilizing crystalline colloidal arrays of high refractive index particles. Through modulation of the refractive index of the particle, and the applied electric field, both the bandwidth and position of the photonic bandgap could be tuned. Full color modulation with high optical quality is achieved, which paves a way to develop a novel reflective display.


Subject(s)
Color , Optical Devices , Photons , Silicon Dioxide/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Colloids/chemistry , Crystallization , Particle Size , Surface Properties
4.
Adv Mater ; 24(18): 2375-9, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22489053

ABSTRACT

Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.


Subject(s)
Wings, Animal/chemistry , Animals , Butterflies , Color , Dimethylpolysiloxanes/chemistry , Nanostructures/chemistry
5.
J Agric Food Chem ; 57(4): 1282-90, 2009 Feb 25.
Article in English | MEDLINE | ID: mdl-19166316

ABSTRACT

Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide-modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation, and silica gel chromatography. The SMVO products were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Further product characterization and analysis was conducted using GC and GC-MS on the fatty acid methyl esters obtained by the transesterification of the SMVO products. Investigation of the effect of reaction conditions showed that high yield and high conversion of double bonds into thiol were favored at low reaction temperatures and high butanethiol/vegetable oil ratios. Canola and corn oils gave similar double-bond conversions and yields of the desired SMVO product even though they have big differences in the relative numbers of single and multiple double bonds in their structures. Under best reaction conditions, up to 97% of double-bond conversion and 61% isolated yields of the purified SMVO products were attained.


Subject(s)
Free Radicals/chemistry , Plant Oils/chemistry , Sulfhydryl Compounds/chemistry , Corn Oil/chemistry , Fatty Acids/analysis , Fatty Acids, Monounsaturated/chemistry , Magnetic Resonance Spectroscopy , Rapeseed Oil , Spectroscopy, Fourier Transform Infrared , Ultraviolet Rays
7.
Chem Commun (Camb) ; (24): 3092-4, 2005 Jun 28.
Article in English | MEDLINE | ID: mdl-15959595

ABSTRACT

The chemical synthesis of 1-dimensional (1-D) PEDOT nanostructures in the form of tubes, rods, thimbles, and belts has been successfully accomplished through the use of a "hard template".

8.
Chem Commun (Camb) ; (19): 2154-5, 2004 Oct 07.
Article in English | MEDLINE | ID: mdl-15467848

ABSTRACT

Nanometre-sized PEDOT-silica core-shell particles were synthesized and self-assembled into crystalline colloidal arrays with a reflection peak in the visible region; these particles were also etched with hydrofluoric acid to produce hollow PEDOT particles.

9.
J Colloid Interface Sci ; 262(2): 418-27, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-16256622

ABSTRACT

The effect of methanol cosolvent on the synthesis of polypyrrole-silica colloidal nanocomposites using ultrafine silica sols in combination with both FeCl3 and APS oxidants has been investigated. Two protocols were evaluated: the addition of methanol to an aqueous silica sol and the addition of water to a methanolic silica sol. The latter protocol proved to be more robust, since it allowed colloidally stable dispersions to be prepared at higher methanol content (up to 50 vol% using the APS oxidant). This allowed greater control over the particle size of the nanocomposite particles. In general, the spectroscopic data, the particle size range, silica contents and electrical conductivities of these nanocomposites were similar to those reported earlier for purely aqueous formulations. Polypyrrole contents ranged from 49 to 71% by mass and particle diameters varied from around 160 to 360 nm. In terms of colloid stability, the APS oxidant was preferred for nanocomposite syntheses in the presence of methanol. However, the FeCl3 oxidant generally gave higher conductivities and narrower size distributions under comparable conditions. HF etching experiments combined with transmission electron microscopy studies indicated that, to a first approximation, these nanocomposite particles had core-shell morphologies, with a hydrophobic polypyrrole core and a hydrophilic silica shell that compose approximately one monolayer of silica sol particles. Finally, aqueous electrophoresis measurements suggested that the polypyrrole-silica nanocomposites were silica-rich and that the methanolic silica sol was more hydrophobic (lower surface charge density) than the aqueous silica sol.

SELECTION OF CITATIONS
SEARCH DETAIL