Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2401534, 2024 May 25.
Article in Dutch | MEDLINE | ID: mdl-38795019

ABSTRACT

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

2.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739873

ABSTRACT

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

4.
Nat Commun ; 14(1): 8247, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086833

ABSTRACT

The superior size and power scaling potential of ferroelectric-gated Mott transistors makes them promising building blocks for developing energy-efficient memory and logic applications in the post-Moore's Law era. The close to metallic carrier density in the Mott channel, however, imposes the bottleneck for achieving substantial field effect modulation via a solid-state gate. Previous studies have focused on optimizing the thickness, charge mobility, and carrier density of single-layer correlated channels, which have only led to moderate resistance switching at room temperature. Here, we report a record high nonvolatile resistance switching ratio of 38,440% at 300 K in a prototype Mott transistor consisting of a ferroelectric PbZr0.2Ti0.8O3 gate and an RNiO3 (R: rare earth)/La0.67Sr0.33MnO3 composite channel. The ultrathin La0.67Sr0.33MnO3 buffer layer not only tailors the carrier density profile in RNiO3 through interfacial charge transfer, as corroborated by first-principles calculations, but also provides an extended screening layer that reduces the depolarization effect in the ferroelectric gate. Our study points to an effective material strategy for the functional design of complex oxide heterointerfaces that harnesses the competing roles of charge in field effect screening and ferroelectric depolarization effects.

5.
Microsc Microanal ; 29(Supplement_1): 422-423, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613202
6.
9.
Nat Commun ; 14(1): 4803, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558697

ABSTRACT

The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2 possesses two stacking arrangements, the ferroelectric Weyl semimetal Td phase and the higher-order topological insulator 1T' phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T', or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2 layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T' and Td domains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2 stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2 flakes. More broadly, this work suggests c-axis confinement as a method to influence layer stacking in other 2D materials.

10.
Nano Lett ; 23(15): 7143-7149, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523664

ABSTRACT

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with in situ electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric Cu2OSeO3. We show that electric fields not only stabilize the hexagonally packed skyrmion lattices in the entire sample in a hysteretic manner but also induce the rotation of their reciprocal vector discretely by 30°. The nonvolatile and energy-efficient skyrmion lattice control by electric fields demonstrated in this work provides an important foundation for designing skyrmion-based qubits and memory devices.

11.
Ultramicroscopy ; 249: 113733, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37030159

ABSTRACT

Advancements in ultrafast electron microscopy have allowed elucidation of spatially selective structural dynamics. However, as the spatial resolution and imaging capabilities have made progress, quantitative characterization of the electron pulse trains has not been reported at the same rate. In fact, inexperienced users have difficulty replicating the technique because only a few dedicated microscopes have been characterized thoroughly. Systems replacing laser driven photoexcitation with electrically driven deflectors especially suffer from a lack of quantified characterization because of the limited quantity. The primary advantages to electrically driven systems are broader frequency ranges, ease of use and simple synchronization to electrical pumping. Here, we characterize the technical parameters for electrically driven UEM including the shape, size and duration of the electron pulses using low and high frequency chopping methods. At high frequencies, pulses are generated by sweeping the electron beam across a chopping aperture. For low frequencies, the beam is continuously forced off the optic axis by a DC potential, then momentarily aligned by a countering pulse. Using both methods, we present examples that measure probe durations of 2 ns and 10 ps for the low and high frequency techniques, respectively. We also discuss how the implementation of a pulsed probe affects STEM imaging conditions by adjusting the first condenser lens.

12.
Ultramicroscopy ; 250: 113745, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37094445

ABSTRACT

Recent advancement in scanning transmission electron microscopy (STEM) allows the use of 4D-STEM, a technique that captures an electron diffraction pattern at each scan point in STEM, to measure electrostatic and magnetic potential and field in materials. However, accurate measurement, separation of the magnetic and electric signals, and removal of artifacts remain challenging, especially in the presence of complex non-uniform diffraction contrast within the disks. Here, based on dynamic simulations of 4D-STEM patterns built upon superstructures consisting of millions of atoms to account for different sample thickness and edge geometries, we show how the shape and intensity distribution of the central disk are affected by multiple scattering. We propose a robust refinement procedure through iteration of the spin-sensitive peak position of the disk-center in the circular Hough transform filtered images from experimental Lorentz 4D-STEM dataset after minimizing the possible artifacts, such as those due to the change of thickness, dynamic scattering, and scanning process. We verify that caution must be taken as in practice the rigid-disk-shift model used to reconstruct induction maps can easily break down due to disk-protrusion when there exists a nonconstant phase gradient or thickness within the width of the probe. Through quantitative analysis and comparing experiment with calculation the effect of the non-spin-related intensity distribution inside the disk as well as that causes the disk shift due to the intensity-protrusion can be removed, and high-quality magnetic field mapping is possible.

13.
Phys Rev Lett ; 129(23): 236601, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36563198

ABSTRACT

Kagome lattice materials have attracted growing interest for their topological properties and flatbands in electronic structure. We present a comprehensive study on the anisotropy and out-of-plane electric transport in Fe_{3}Sn_{2}, a metal with bilayer of Fe kagome planes and with massive Dirac fermions that features high-temperature noncollinear magnetic structure and magnetic skyrmions. For the electrical current path along the c axis, in micron-size crystals, we found a large topological Hall effect over a wide temperature range down to spin-glass state. Twofold and fourfold angular magnetoresistance are observed for different magnetic phases, reflecting the competition of magnetic interactions and magnetic anisotropy in kagome lattice that preserve robust topological Hall effect for inter-kagome bilayer currents. This provides new insight into the anisotropy in Fe_{3}Sn_{2}, of interest in skyrmionic-bubble application-related micron-size devices.

14.
Nano Lett ; 22(18): 7522-7526, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36070237

ABSTRACT

Epitaxial Fe(Te,Se) thin films have been grown on various substrates but never been grown on magnetic layers. Here we report the epitaxial growth of fourfold Fe(Te,Se) film on a sixfold antiferromagnetic insulator, MnTe. The Fe(Te,Se)/MnTe heterostructure shows a clear superconducting transition at around 11 K, and the critical magnetic field measurement suggests the origin of the superconductivity to be bulk-like. Structural characterizations suggest that the uniaxial lattice match between Fe(Te,Se) and MnTe allows a hybrid symmetry epitaxy mode, which was recently discovered between Fe(Te,Se) and Bi2Te3. Furthermore, the Te/Fe flux ratio during deposition of the Fe(Te,Se) layer is found to be critical for its superconductivity. Now that superconducting Fe(Te,Se) can be grown on two related hexagonal platforms, Bi2Te3 and MnTe, this result opens a new possibility of combining topological superconductivity of Fe(Te,Se) with the rich physics in the intrinsic magnetic topological materials (MnTe)n(Bi2Te3)m family.

15.
Nat Mater ; 21(7): 754-760, 2022 07.
Article in English | MEDLINE | ID: mdl-35513502

ABSTRACT

Semiconductors, featuring tunable electrical transport, and magnets, featuring tunable spin configurations, form the basis of many information technologies. A long-standing challenge has been to realize materials that integrate and connect these two distinct properties. Two-dimensional (2D) materials offer a platform to realize this concept, but known 2D magnetic semiconductors are electrically insulating in their magnetic phase. Here we demonstrate tunable electron transport within the magnetic phase of the 2D semiconductor CrSBr and reveal strong coupling between its magnetic order and charge transport. This provides an opportunity to characterize the layer-dependent magnetic order of CrSBr down to the monolayer via magnetotransport. Exploiting the sensitivity of magnetoresistance to magnetic order, we uncover a second regime characterized by coupling between charge carriers and magnetic defects. The magnetoresistance within this regime can be dynamically and reversibly tuned by varying the carrier concentration using an electrostatic gate, providing a mechanism for controlling charge transport in 2D magnets.


Subject(s)
Magnetics , Semiconductors , Magnetic Phenomena , Magnets
16.
Ultramicroscopy ; 235: 113497, 2022 May.
Article in English | MEDLINE | ID: mdl-35193073

ABSTRACT

The development of ultrafast electron microscopy (UEM), specifically stroboscopic imaging, has brought the study of structural dynamics to a new level by overcoming the spatial limitations of ultrafast spectroscopy and the temporal restrictions of traditional TEM simultaneously. Combining the concepts governing both techniques has enabled direct visualization of dynamics with spatiotemporal resolutions in the picosecond-nanometer regime. Here, we push the limits of imaging using a pulsed electron beam via RF induced transverse deflection based on the newly developed 200 keV frequency-tunable strip-line pulser. We demonstrate a 0.2 nm spatial resolution and elucidation of magnetic spin induction maps using the phase-microscopy method. We also present beam coherence measurements and expand our study using the breathing modes of a silicon interdigitated comb under RF excitation which achieves improved temporal synchronization between the electron pulse-train and electric field. A new RF holder has also been developed with impedance matching to the RF signal to minimize transmission power loss to samples and its performance is compared with a conventional sample holder.

17.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34593631

ABSTRACT

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

18.
Nano Lett ; 21(14): 5914-5919, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34265206

ABSTRACT

Controlling magnetic order in magnetic topological insulators (MTIs) is a key to developing spintronic applications with MTIs and is commonly achieved by changing the magnetic doping concentration, which inevitably affects the spin-orbit coupling strength and the topological properties. Here, we demonstrate tunable magnetic properties in topological heterostructures over a wide range, from a ferromagnetic phase with a Curie temperature of around 100 K all the way to a paramagnetic phase, while keeping the overall chemical composition the same, by controlling the thickness of nonmagnetic spacer layers between two atomically thin magnetic layers. This work showcases that spacer-layer control is a powerful tool to manipulate magneto-topological functionalities in MTI heterostructures. Furthermore, the interaction between the MTI and the Cr2O3 buffer layers also leads to a robust topological Hall effect surviving up to a record-high 6 T of magnetic field, shedding light on the critical role of interfacial layers in thin-film topological materials.

19.
Nano Lett ; 21(15): 6518-6524, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34319741

ABSTRACT

It is challenging to grow an epitaxial 4-fold compound superconductor (SC) on a 6-fold topological insulator (TI) platform due to the stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) layer due to accidental, uniaxial lattice match, which is dubbed as "hybrid symmetry epitaxy". This new growth mode is critical to stabilizing robust superconductivity with TC as high as 13 K. Furthermore, the superconductivity in this FeTe1-xSex/Bi2Te3 system survives in the Te-rich phase with Se content as low as x = 0.03 but vanishes at Se content above x = 0.56, exhibiting a phase diagram that is quite different from that of the conventional Fe(Te,Se) systems. This unique heterostructure platform that can be formed in both TI-on-SC and SC-on-TI sequences opens a route to unprecedented topological heterostructures.

20.
Nano Lett ; 21(9): 4006-4012, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33929867

ABSTRACT

The origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electron microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...