Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 271(Pt 1): 132637, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38795565

ABSTRACT

Metal-organic frameworks are emerging inorganic-organic hybrid materials that can be self-assembled from metal ions and organic ligands via coordination bonds. These materials possess large specific surface area, tunable pore structure, abundant active center, diversity of functional groups as well as high mechanical and thermal stability which promote their applications in adsorption and catalysis studies. In this study, NH2-MIL-53(Al/Zr) was prepared and embedded into sodium alginate gel spheres (NH2-MIL-53(Al/Zr)-SA) and its adsorption properties towards TC and DCF in solution were investigated. According to XRD and FTIR analysis, the structure of the raw material was not changed after making the gel spheres. The maximum adsorption towards TC (pH =3) and DCF (pH =5) reached 98.5 mg·g-1 and 192 mg·g-1, respectively. The process was consistent with Langmuir and Freundlich, suggesting that there was both monolayer and multilayer adsorption which infers the presence of physical adsorption (intra-particle diffusion) and non-homogeneous chemical adsorption. The thermodynamic parameters showed that the adsorption process was a spontaneous entropy increasing reaction. The regeneration rate of spent NH2-MIL-53(Al/Zr)-SA could still reach 99.1 % after three cycles, indicating good regeneration performance. This study can provide a basis for the application of NH2-MIL-53(Al/Zr)-SA in wastewater treatment.

2.
Environ Sci Pollut Res Int ; 31(4): 5582-5595, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38127238

ABSTRACT

A cationic surfactant (cetyltrimethylammonium bromide, CTAB)-modified peanut husk pretreated with potassium permanganate (KMnO4) was developed and applied as an adsorbent for the removal of Congo red (CR) in aqueous solution. The surface morphology and physicochemical characteristics of the adsorbent labelled as PNK-CTAB were assessed using well-established analytical techniques. The efficiency of PNK-CTAB was assessed via the batch adsorption method using distilled water, tap water and river water as aqueous medium. Results of the batch study showed that the adsorption capacity of PNK-CTAB could reach 70.5 mg g-1 at 313 K due to its improved surface properties and functionalities. Furthermore, the uptake of CR onto PNK-CTAB was found to be best described by the Elovich model thus suggesting adsorption on a heterogeneous surface, whereas fitting of intraparticle diffusion model indicated the significant role of mass transfer mechanism in the process. The equilibrium data was found to be well described by Langmuir, Temkin and Freundlich models albeit the latter was the best fit. Further analysis of the associated thermodynamics indicated the adsorption process to be endothermic, spontaneous in nature and likely mediated by physisorption processes. The excellent adsorption efficiency of PNK-CTAB toward CR within a wide pH range, negligible influence of some commonly occurring salts, good reusability efficiency, low cost (as confirmed by its cost analysis) and its ability to reduce the cytotoxicity of CR towards human embryonic kidney (HEK) 293 cells suggest the good prospects of this adsorbent for practical applications.


Subject(s)
Congo Red , Water Pollutants, Chemical , Humans , Congo Red/analysis , Cetrimonium , Arachis , Adsorption , HEK293 Cells , Kinetics , Thermodynamics , Water , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 253(Pt 7): 127535, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37863135

ABSTRACT

A composite (ZS-UiO-66-NH2) zirconium crosslinked sodium alginate gel beads (ZS)-metal-organic skeleton (UiO-66-NH2) were prepared in this study through in-situ growth under simple, green and mild conditions for removal of the salicylic acid (SA) and sulfosalicylic acid (SSA) from water. The physicochemical properties of ZS-UiO-66-NH2 were characterized using various analytical methods. The influencing factors in the adsorption process including pH of solution, amount of adsorbent, coexisting ions, adsorption time, reaction temperature and equilibrium concentration of SA/SSA were performed in batch adsorption. The experimental results indicated that ZS-UiO-66-NH2 had high stability and could achieve efficient adsorption of SA/SSA in broad pH range (2-9) and salinity (0-0.2 mol·L-1). SA and SSA adsorbed on the composite at 293 K reached high values of 193 and 167 mg·g-1 from Langmuir model, respectively. Kinetic and isotherm studies demonstrated that the adsorption processes were mainly multilayer heterogeneous chemisorption. Thermodynamic data manifested that the two processes were exothermic and spontaneous with increasing entropy. ZS-UiO-66-NH2 can effectively remove SA/SSA from simulated wastewater under different pH and can be reused after elution with a NaHCO3 solution (5 mmol·L-1). The ZS-UiO-66-NH2 composite has great potential for removing SA/SSA from actual water bodies.


Subject(s)
Salicylic Acid , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Adsorption , Alginates/chemistry , Water , Kinetics
4.
Anal Chim Acta ; 1275: 341579, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37524465

ABSTRACT

Due to widespread application of chlorpyrifos for controlling pests in agriculture, the continuous accumulation of chlorpyrifos residue has caused serious environmental pollution.The detection of chlorpyrifos is of great significance for humans and environment because it can arise a series of diseases by inhibiting acetylcholinesterase (AChE) activity. Photoelectrochemical sensing, as an emerging sensing technology, has great potential in the detection of chlorpyrifos. It is urgent that find a suitable photoelectric sensing strategy to effectively monitor chlorpyrifos. Herein, an n-n heterojunction was constructed by uniformly immobilizing n-type 3DBiOI, which had loose porous structure composed of numerous small and thin nanosheets, on the surface of TiO2 with anatase/rutile (AR-TiO2) heterophase junction. Under light irradiation, the proposed BiOI/AR-TiO2 n-n heterojunction exhibited excellent optical absorption characteristics and photoelectrochemical activity. Additionally, the photoelectrochemical sensing platform demonstrated excellent analytical performance in monitoring chlorpyrifos. Under optimized conditions, it showed a wide detection range of 1 pg mL-1- 200 ng mL-1 and a detection limit (S/N = 3) as low as 0.24 pg mL-1, with superior selectivity and stability. The ultra-sensitivity and great specificity for detection of chlorpyrifos can be ascribed to chelation between Bi (Ⅲ) and C=N and P=S bonds in chlorpyrifos, which had been confirmed in this work. Meanwhile, the PEC sensor also had potential application value for monitoring chlorpyrifos in water samples, lettuce and pitaya, which the recoveries of samples ranged from 96.9% to 104.7% with a relative standard deviation (RSD) of 1.11%-5.93%. This sensor provided a novel idea for constructing heterojunctions with high photoelectric conversion efficiency and had a high application prospect for the detection of chlorpyrifos and other structural analogues.


Subject(s)
Biosensing Techniques , Chlorpyrifos , Humans , Acetylcholinesterase , Electrochemical Techniques/methods , Biosensing Techniques/methods
5.
Environ Sci Pollut Res Int ; 30(41): 93877-93891, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37525078

ABSTRACT

One green adsorbent, UiO-66-NH2 modified peanut shell (c-PS-MOF), was prepared in a green synthetic route for improving the capture level of aspirin (ASP) and fluoride ion (F-). The adsorption properties of c-PS-MOF were evaluated by batch experiments and its physicochemical properties were explored by various characterization methods. The results showed that c-PS-MOF exhibited a wide range of pH applications (ASP: 2-10; F-: 3-12) and high salt resistance in the capturing processes of ASP and F-. The unit adsorption capacity of c-PS-MOF was as high as 84.7 mg·g-1 for ASP as pH = 3 and 11.2 mg·g-1 for F- under pH = 6 at 303 K from Langmuir model, respectively. When the solid-liquid ratio was 2 g·L-1, the content of ASP (C0 = 100 mg·L-1) and F- (C0 = 20 mg·L-1) in solution can be reduced to 0.48 mg·L-1 and 1.05 mg·L-1 separately. The recycling of c-PS-MOF can be realized with 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples showed that c-PS-MOF could be used to remove ASP and F- from actual water. The c-PS-MOF is promising to bind ASP and F- from rivers, lakes, etc.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water , Arachis , Fluorides , Water Purification/methods , Water Pollutants, Chemical/analysis , Adsorption , Aspirin/analysis
6.
Angew Chem Int Ed Engl ; 62(36): e202307875, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37460441

ABSTRACT

Stimuli-responsive circularly polarized luminescence (CPL) materials are ideal for information anti-countering applications, but the best-performing materials have not yet been identified. This work presents enantiomorphic hybrid antimony halides R-(C5 H12 NO)2 SbCl5 (1) and S-(C5 H12 NO)2 SbCl5 (2) showing mirror-imaged CPL activity with a dissymmetry factor of 1.2×10-3 . Interestingly, the DMF-induced structural transformation is realized to obtain non-emissive R-(C5 H12 NO)2 SbCl5 ⋅ DMF (3) and S-(C5 H12 NO)2 SbCl5 ⋅ DMF (4) upon exposure to DMF vapor. The transformation process is reversed upon heating. DFT calculations showed that the DMF-induced-quenched-luminescence is attributed to the intersection of the ground and excited state curves on the configuration coordinates. Unexpectedly, the nanocrystals of the chiral antimony halides 1 and 2 were prepared and indicate the excellent solution process performance. The reversible PL and CPL switching gives the system applications in information technology, anti-counterfeiting, encryption-decryption, and logic gates.

7.
Environ Res ; 231(Pt 3): 116314, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37270083

ABSTRACT

Phenolic compounds are common industrial pollutants that seriously endangers water ecology and human health. Therefore, the development of efficient and recyclable adsorbents is of importance for wastewater treatment. In this research, HCNTs/Fe3O4 composites were constructed using co-precipitation way by loading magnetic Fe3O4 particles onto hydroxylated multi-walled carbon nanotubes (MWCNTs), showing excellent adsorption capacity for Bisphenol A (BPA) and p-chlorophenol (p-CP), and excellent catalytic ability of activating potassium persulphate (KPS) for degradation of BPA and p-CP. The adsorption capacity and catalytic degradation potential were evaluated for the removal of BPA and p-CP from solutions. The results showed that the adsorption took only 1 h to reach equilibrium and HCNTs/Fe3O4 had maximum adsorption capacities of 113 mg g-1 for BPA and 41.6 mg g-1 for p-CP at 303 K, respectively. The adsorption of BPA fitted well using the Langmuir, Temkin and Freundlich models while the adsorption of p-CP fitted well using the Freundlich and Temkin models. BPA adsorption on HCNTs/Fe3O4 was dominated by π-π stacking and hydrogen bonding forces. The adsorption included both the mono-molecular layer adsorption on the adsorbent surface and the multi-molecular layer adsorption on the non-uniform surface. The adsorption of p-CP on HCNTs/Fe3O4 was a multi-molecular layer adsorption on a dissimilar surface. The adsorption was controlled by forces such as π-π stacking, hydrogen bonding, partition effect and molecular sieve effect. Moreover, KPS was added to the adsorption system to initiate a heterogeneous Fenton-like catalytic degradation. Over a wide pH range (4-10), 90% of the aqueous BPA solution and 88% of the p-CP solution were degraded in 3 and 2 h, respectively. After three adsorption-regeneration or degradation cycles, the removal of BPA and p-CP remained up to 88% and 66%, indicating that HCNTs/Fe3O4 composite is cost-effective, stable and highly efficient to remove BPA and p-CP from solution.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Humans , Adsorption , Water , Magnetic Phenomena , Water Pollutants, Chemical/analysis , Kinetics
8.
Environ Sci Pollut Res Int ; 30(21): 60574-60589, 2023 May.
Article in English | MEDLINE | ID: mdl-37032407

ABSTRACT

In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.


Subject(s)
Herbicides , Organometallic Compounds , Water Pollutants, Chemical , Water , Adsorption , Phenoxyacetates , Indicators and Reagents , 2,4-Dichlorophenoxyacetic Acid , Water Pollutants, Chemical/chemistry , Glyphosate
9.
J Colloid Interface Sci ; 640: 761-774, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36905888

ABSTRACT

In this study, a new composite (MWCNTs-CuNiFe2O4) prepared by loading magnetic CuNiFe2O4 particles onto carboxylated carbon nanotubes (MWCNTs) through co-precipitation was applied to remove oxytetracycline hydrochloride (OTC-HCl) in solution. The magnetic properties of this composite could address of the issue of difficulty associated with the separation of MWCNTs from mixtures when applied as an adsorbent. In addition to the good adsorption properties recorded for MWCNTs-CuNiFe2O4 towards OTC-HCl, this developed composite could be used to activate potassium persulfate (KPS) for an efficient degradation of OTC-HCl. The MWCNTs-CuNiFe2O4 was systematically characterized using Vibrating Sample Magnetometer (VSM), Electron Paramagnetic Resonance (EPR) and X-ray Photoelectron Spectroscopy (XPS). The influence of dose of MWCNTs-CuNiFe2O4, the initial pH, the amount of KPS and the reaction temperature on the adsorption and degradation of OTC-HCl by MWCNTs-CuNiFe2O4 were discussed. The adsorption and degradation experiments showed that MWCNTs-CuNiFe2O4 exhibited an adsorption capacity of 270 mg·g-1 for OTC-HCl with the removal efficiency 88.6% at 303 K (at an initial pH 3.52, 5 mg KPS, 10 mg composite, 10 mL reaction concentration 300 mg·L-1 of OTC-HCl). The Langmuir and Koble-Corrigan models were used to describe the equilibrium process while the Elovich equation and Double constant model were suitable to describe the kinetic process. The adsorption process was based on single-molecule layer reaction and non-homogeneous diffusion process. The mechanisms of adsorption were complexation and hydrogen bond whereas active species such as SO4‧-, ‧OH and 1O2 were confirmed to have played a major role in the degradation of OTC-HCl. The composite was also found to be very stable with good reusability property. These results confirm the good potential associated with the use of MWCNTs-CuNiFe2O4/KPS system for the removal of some typical pollutants from wastewater.

10.
Environ Sci Pollut Res Int ; 30(15): 44148-44160, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36689107

ABSTRACT

Herein, cetylpyridinium-modified bagasse (SB-CPC) biomass was synthesized and applied for removal of noxious Cr(VI) ions from aqueous matrix. Batch mode analyses were conducted, and the results showed that SB-CPC adsorbent has a maximum uptake capacity (qm) of 70.5 ± 3.2 mg g-1 at 303 K. The adsorption isotherms and kinetics for elimination of Cr(VI) by SB-CPC were better fitted by Langmuir model and pseudo-second-order model, respectively. The occurrence of pseudo-second-order kinetic could be mainly influenced by the intra-particle diffusion mass transfer. Electrostatic attraction was the dominant underlying reaction mechanism followed by pore filing effect (minor). Thermodynamic study affirms the endothermic behavior and occurrence of physical adsorption process. SB-CPC adsorbent had exhibited an outstanding desorption-regeneration performance using NaOH solution; accordingly, it can practically be applied for remediation of wastewater tainted with Cr(VI) ions.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water , Cetylpyridinium , Adsorption , Biomass , Thermodynamics , Chromium/analysis , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Water Purification/methods
11.
Environ Sci Pollut Res Int ; 30(11): 31294-31308, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36445525

ABSTRACT

In this work, a novel adsorbent, activated carbon (PSAC) developed by the activation of pine sawdust's pyrolytic carbon (PSPC), is applied to adsorb 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The optimized preparation conditions of PSAC were presented. The results revealed that equilibrium adsorption capacity (qe) of PSAC was notably enhanced up to threefold compared with PSPC. The adsorbents were characterized by a variety of techniques such as SEM, XRD, FT-IR, and elemental analysis. The key factors (such as adsorbent dosage, pH, salt concentration, temperature, and contact time) influencing the adsorption process were also studied. The adsorption quantities of PSAC for 2,4-DCP and 4-CP were 135.7 mg·g-1 and 77.3 mg·g-1, respectively. The equilibrium adsorption of 4-DCP and 4-CP was suitable to be predicted by the Freundlich and Koble-Corrigan models, while kinetic process was better described by the pseudo-second-order kinetic model and Elovich equation. The process was spontaneous. After repeated regeneration of PSAC with ethanol, the adsorption capacity of PSAC was not significantly reduced, indicating that PSAC can be recycled by regeneration after adsorption of 4-CP. This work provides a viable method to use activated carbon as an effective adsorbent for pollutant removal.


Subject(s)
Chlorophenols , Water Pollutants, Chemical , Thermodynamics , Charcoal/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared , Chlorophenols/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
12.
Environ Sci Pollut Res Int ; 29(60): 90738-90751, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35879633

ABSTRACT

In this study, a zirconium elemental organic framework (UiO-66-NH2) was prepared by a green synthesis method and showed a good adsorption performance for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. UiO-66-NH2 was analyzed by a variety of characterization methods and the adsorption properties of 2,4-D on UiO-66-NH2 were investigated by static adsorption experiments. The results showed that the adsorption of 2,4-D had a wide pH range (2-10) and good salt tolerance with the adsorption equilibrium time about 2 h. The maximum adsorption capacity from Langmuir was up to 652 mg g-1 at 303 K. The isotherms can be described by Langmuir model and the adsorption kinetics was consistent with pseudo-second-order kinetic model and Elovich model. The regeneration efficiency was still 95% after 5 cycles with 0.01 mol L-1 NaOH as desorption solution. The feasibility of practical application of UiO-66-NH2 was explored by simulating actual wastewater at different pH. UiO-66-NH2 is promising to remove 2,4-D from water.


Subject(s)
Physics , Water , 2,4-Dichlorophenoxyacetic Acid
13.
Environ Sci Pollut Res Int ; 29(60): 90530-90548, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35870067

ABSTRACT

Recent progress has been made in the application of novel zirconium-loaded amine-grafted walnut shells as multifunctional adsorbents for the remediation of Alizarin red (AR) and bacteria in aqueous solutions. The morphology and functional groups of ACWNS@Zr were studied using Brunauer-Emmett-Teller (BET) techniques, X-ray diffraction (XRD), pH point of zero charges (pHpzc), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Adsorption and regeneration tests were carried out in batch and column mode. The ACWNS@Zr had a Langmuir maximum capacity of 415.5 ± 6.1 mg g-1 at 303 K. The spread plate technique was used to evaluate the adsorbent's antimicrobial properties against Staphylococcus aureus and Escherichia coli. ACWNS@Zr exhibited inhibitory potential towards S. aureus and E. coli in the suspensions by 53.3% and 15.0%, respectively. Electrostatic interaction and complexation interaction could be the key mechanisms governing AR dye removal. Equilibrium isotherms fit Langmuir models better for both batch and column studies, while adsorption kinetics to pseudo-second-order and Thomas models for batch and column studies, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. Furthermore, columns' mass transfer capacity (B) increased as the concentration increased due to the enhanced driving force for AR adsorption onto ACWNS@Zr. Regeneration with NaOH solution of AR-loaded ACWNS@Zr was remarkable.


Subject(s)
Amines , Zirconium , Water , Staphylococcus aureus , Escherichia coli
14.
Environ Sci Pollut Res Int ; 29(42): 64177-64191, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35471759

ABSTRACT

We engineered a tiger nut residue (TNR, a low-cost agricultural waste material) through a facile and simple process to take advantage of the introduced functional groups (cetylpyridinium chloride, CPC) in the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in batch mode and further investigated its impingement on bacterial growth in a yeast-dextrose broth. The surface characterizations of the adsorbent were achieved through Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The batch adsorption studies revealed that solution pH, adsorbent dose, temperature, and salt affected the adsorptive capacity of TNR-CPC. The equilibrium data were best fitted by Langmuir isotherm model with a maximum monolayer adsorption capacity of 90.2 mg g-1 at 318 K and pH 3. Pseudo-second-order model best fitted the kinetics data for the adsorption process. Physisorption largely mediated the adsorption system with spontaneity and a shift in entropy of the aqueous solid-solute interface reflecting decreased randomness with an exothermic character. TNR-CPC demonstrated a good reusability potential making it highly economical and compares well with other adsorbents for decontamination of 2,4-D. The adsorption of 2,4-D proceeded through a probable trio-mechanism; electrostatic attraction between the carboxylate anion of 2,4-D and the pyridinium cation of TNR-CPC, hydrogen bonding between the hydroxyl (-OH) group inherent in the TNR and the carboxyl groups in 2,4-D and a triggered π-π stacking between the benzene structures in the adsorbate and the adsorbent. TNR-CPC reported about 99% inhibition rate against both gram-positive S. aureus and gram-negative E. coli. It would be appropriate to investigate the potential of TNR-CPC as a potential replacement to the metal oxides used in wastewater treatment for antibacterial capabilities, and its effects against airborne bacteria could also be of interest.


Subject(s)
Cetylpyridinium , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Adsorption , Anti-Bacterial Agents/pharmacology , Benzene , Cetylpyridinium/chemistry , Escherichia coli , Glucose , Hydrogen-Ion Concentration , Kinetics , Oxides , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Thermodynamics , Water Pollutants, Chemical/chemistry
15.
Environ Sci Pollut Res Int ; 29(14): 20976-20995, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34748176

ABSTRACT

The presence of emerging pollutants such as PO43- and NO3- in water bodies has attracted worldwide concern about their severe effects on water bodies and the health of humankind in general. Therefore, to preserve the health of humankind and environmental safety, it is of the essence that industrial effluents are treated before they are discharged into water bodies. Amine functionalized walnut shells (ACWNS) were synthesized, characterized, and then tested as a novel adsorbent for PO43- and NO3- removal. The effects of pH, dosage, initial phosphate concentration, interference ions, and temperature on the removal of phosphate and nitrate were investigated. Notably, the adsorption of PO43- and NO3- was exothermic and spontaneous, with a maximum uptake capacity of phosphate and nitrate, at 293 K, 82.2 and 35.7 mg g-1, respectively. The mechanism by which these ions were adsorbed onto ACWNS could be electrostatic interactions and hydrogen bonding. Pseudo-second-order kinetic model fitted the PO43- and NO3- adsorption, while Freundlich and Langmuir models best fitted the PO43- and NO3- adsorption, respectively. Furthermore, in the binary system, the uptake capacity of phosphate decreased by 14.4% while nitrate witnessed a reduction in its uptake capacity of 10.4%. ACWNS has a higher attraction towards both ions and this could be attributed to the existence of a variety of active areas on ACWNS that exhibit a degree of specificity for the individual ions. Results obtained from real water sample analysis confirmed ACWNS as highly efficient to be utilized for practical remediation processes.


Subject(s)
Juglans , Water Pollutants, Chemical , Adsorption , Amines , Hydrogen-Ion Concentration , Juglans/chemistry , Kinetics , Nitrates/analysis , Phosphates/chemistry , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 287(Pt 1): 132030, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34461338

ABSTRACT

A biocomposite (PN-Fe3O4-PEI) was synthesized via the chemical modification of peanut husk (a low-cost adsorbent) with Fe3O4 particles and polyethyleneimine under benign environmental conditions. The modification agents used in this study were observed to overcome the challenges associated with the use pristine peanut husk with a concomitant enhancement in its efficiency as an adsorbent. Results from the characterization studies employed in this study confirmed PN-Fe3O4-PEI to be a crystalline magnetic adsorbent with a mesoporous structure. The adsorption property of the developed material (PN-Fe3O4-PEI) for wastewater treatment was investigated using Chromium (VI), Phosphates (PO43-) and Congo red (CR) as model pollutants. Using the batch method, PN-Fe3O4-PEI exhibited a maximum monolayer adsorption capacity of 58.4, 13.5 and 71.3 mg g-1 for Cr(VI), PO43- (as P g L-1) and CR, respectively and was dependent on temperature and initial adsorbate concentration. Kinetic studies revealed that the Elovich equation, the pseudo-second order kinetic model and double constant equation well described the uptake of Cr(VI), PO43- and CR onto PN-Fe3O4-PEI, respectively. These results may confirm the uptake of these pollutants to be mainly driven by chemical forces. In addition, PN-Fe3O4-PEI was observed to be efficient for the decontamination of the studied pollutants in real water samples as well as exhibit antibacterial properties towards the growth of S. aureus. These properties of PN-Fe3O4-PEI with its other excellent features such as high stability in solution, good regeneration properties and its facile retrieval from the solution using a magnet promote its suitability for practical wastewater treatment.


Subject(s)
Congo Red , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Arachis , Chromium , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Phosphates , Staphylococcus aureus , Water Pollutants, Chemical/analysis
17.
J Colloid Interface Sci ; 606(Pt 2): 1249-1260, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492463

ABSTRACT

In this study, an iron(III)-loaded magnetic chitosan/graphene oxide composite (Fe-MCG) was synthesized and applied for the adsorptive removal of sulfosalicylic acid (SSA) in aqueous solution. The results obtained from the application of various characterization techniques such as scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) prove the successful formation of the composite with enhanced microstructure and superparamagnetic properties. The adsorption capacity of Fe-MCG towards SSA via batch mode reaches up to 135 mg/g at 293 K. The adsorption of SSA onto Fe-MCG is driven by monolayer adsorption with the chemical and physical adsorption processes both playing active roles. The Langmuir isotherm and pseudo-second-order kinetic models were observed to best describe the equilibrium adsorption and kinetic processes, respectively. The values obtained for the associated thermodynamic parameters confirm that the adsorptive process is spontaneous, exothermic and entropy-increasing. The efficacy and reusability of the spent Fe-MCG was studied using 0.01 mol/L NaOH solution. The kinetic process for the desorption of SSA from Fe-MCG is well described by the pseudo-second-order kinetic model. Based on the experimental results and XPS analysis, the underlying mechanisms for the uptake of SSA onto Fe-MCG involve electrostatic forces, complexation, π-π stacking, and hydrogen bonding. Overall, the excellent features of Fe-MCG enhance its potential as an adsorbent for the sequestration of SSA in environmental media.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Benzenesulfonates , Graphite , Hydrogen-Ion Concentration , Iron , Kinetics , Magnetic Phenomena , Salicylates , Thermodynamics
18.
Int J Biol Macromol ; 182: 1759-1768, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34048839

ABSTRACT

In this study, zirconium (IV)-impregnated magnetic chitosan graphene oxide (Zr-MCGO) was synthesized for removing fluoride from aqueous solution in batch mode. Characterization approaches (pHpzc, FTIR, SEM, XRD, VSM, Raman, BET, and XPS) proved the successful incorporation of Zr into the adsorbent. Zr-MCGO exhibited a relatively favorable and stable capacity of defluoridation at lower pH with a wide range of pH from 4.0 to 8.0, while there was slightly negative effect of ionic strength on adsorption. In addition, Elovich kinetic model and Koble-Corrigan isotherm model could describe the uptake of fluoride well. The adsorption capacity was 8.84 mg/g at 313 K and Zr-MCGO was easily separated from mixtures using external magnet. Based on the experiments and XPS, electrostatic force, ligand exchange, and Lewis acid-base interaction might be potential adsorption mechanisms. Pseudo-second-order model was more compatible with the desorption process by 0.01 mol/L NaHCO3 solution. Therefore, Zr-MCGO was a promising candidate for defluoridation on wastewater pollution remediation.


Subject(s)
Chitosan/chemistry , Fluorides/isolation & purification , Graphite/chemistry , Magnetic Phenomena , Water/chemistry , Zirconium/chemistry , Adsorption , Anions , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Salinity , Solutions , Temperature , Time Factors
19.
Sci Total Environ ; 780: 146629, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030339

ABSTRACT

This review is an attempt to assess the adsorption performance of different green adsorbents derived from agricultural waste materials (AWMs) that were used for the elimination of bisphenol A (BPA) from aqueous matrices. Different processes including grafting, polymerization, activation and chemical treatment have been applied to functionalize and modify agricultural waste materials for the purposes of increasing their adsorptive performances toward BPA. The highest reported adsorption capacity of adsorbent from agricultural waste for the uptake of BPA is the highly microporous carbon adsorbent derived from Argan nut shell (1408 mg g-1). Hydrogen bonding, hydrophobic and π-π interactions were reported in most studies as the main mechanisms governing the adsorption of BPA onto agricultural waste adsorbents. Equilibrium isotherm and kinetic studies for the uptake of BPA onto agricultural waste adsorbents were best described by Langmuir/Freundlich model and pseudo-second order model, respectively. Despite the effective elimination of BPA by various agricultural waste adsorbents, an appropriate selection of elution solvent is important for effective desorption of BPA from spent adsorbent. To date, ethanol, diethyl ether-methanol, methanol-acetic acid, mineral acids and sodium hydroxide are the most eluents applied for desorption of BPA molecules loaded onto AW-adsorbents. Looking toward the future, studies on the agricultural waste adsorbents based on polymers, activated carbons, nanoparticles and highly microporous carbons should be mostly considered by the researchers toward removing BPA. These future studies should be performed both in laboratory, pilot and industrial scales, and also should report the sustainable techniques for disposal of the spent AW-adsorbents after lose their adsorption performance on BPA.

20.
J Colloid Interface Sci ; 598: 69-82, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33892443

ABSTRACT

Accessibility to quality and clean water has in recent times been compromised due to the presence of pollutants, thus posing as a threat to the survival of living organisms. The adsorption technique in this regard has been observed to be useful in the remediation process with the material used as the adsorbent playing an integral role. In this study, a novel biocomposite (PN-Fe3O4-IDA-Al) based on peanut husk (a low-cost material) was developed by functionalization with aluminum (Al), iminodiacetic acid (IDA) and Fe3O4. The efficiency of PN-Fe3O4-IDA-Al as an adsorbent for the remediation of wastewater was evaluated using Congo red (CR) and phosphates (PO43-) as model pollutants. The results from the characterization studies confirmed PN-Fe3O4-IDA-Al to have superparamagnetic properties which ensures its easy retrieval. Adsorption studies indicated that PN-Fe3O4-IDA-Al had a maximum monolayer capacity of 79.0 ± 2.0 and 16.8 ± 2.5 mg g-1 for CR and PO43- (according to P), respectively, which was significantly dependent on factors such as reaction time, solution pH, temperature and the presence of some common anions. The Freundlich model was observed to better describe both adsorption processes with chemisorption being the principal underlying mechanism. Results from using real water samples confirmed PN-Fe3O4-IDA-Al to be highly efficient for practical remediation processes. These results coupled with the synthesis of PN-Fe3O4-IDA-Al under benign conditions using low-cost materials help to expound the knowledge on the use of low cost materials as the basis for the development of highly efficient adsorbents for wastewater remediation.


Subject(s)
Congo Red , Water Pollutants, Chemical , Adsorption , Arachis , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Phosphates , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...