Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403209

ABSTRACT

This study aimed to investigate the multiscale structure, physicochemical properties, and in vitro digestibility of black rice starch (BRS) and gallic acid (GA) complexes prepared using varying ultrasound powers. The findings revealed that ultrasonic treatment disrupted BRS granules while enhancing the composite degree with GA. The starch granules enlarged and aggregated into complexes with uneven surfaces. Moreover, the crystallinity of the BRS-GA complexes increased to 22.73 % and formed V6-I-type complexes through non-covalent bonds. The increased short-range ordering of the complexes and nuclear magnetic resonance hydrogen (1H NMR) further indicated that the BRS and GA molecules interacted mainly through non-covalent bonds such as hydrogen bonds. Additionally, ultrasound reduced the viscoelasticity of the complexes while minimizing the mass loss of the complexes at the same temperature. In vitro digestion results demonstrated an increase in resistant starch content up to 37.60 % for the BRS-GA complexes. Therefore, ultrasound contributes to the formation of V-typed complexes of BRS and GA, which proves the feasibility of using ultrasound alone for the preparation of starch and polyphenol complexes while providing a basis for the multiscale structure and digestibility of polyphenol and starch complexes.


Subject(s)
Oryza , Oryza/chemistry , Gallic Acid/chemistry , Digestion , Starch/chemistry , Polyphenols
2.
Int J Biol Macromol ; 258(Pt 1): 128938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143061

ABSTRACT

In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.


Subject(s)
Amylose , Resistant Starch , Amylose/chemistry , Zea mays/chemistry , Ultrasonics , Digestion , Starch/chemistry
3.
Int J Biol Macromol ; 244: 125397, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37327927

ABSTRACT

In this study, high amylose maize starch(HAMS)was treated by Hydrothermal-alkali. SEM, SAXS, XRD, FTIR, LC-Raman, 13C CP/MAS NMR, GPC and TGA were used to study the changes in the granules and structure of HAMS. The results show that the granule morphology, lamellar structure, and birefringence of HAMS remained intact at 30 °C and 45 °C. With increasing temperature, the starch granules are fragmented, and the crystallinity, DD, FWHM values, molecular weight, and thermal stability of HAMS decrease. The double helical structure dissociated, and the content of amorphous regions increased, indicating the from order to the disorder of the HAMS structure. A similar annealing behavior occurred in HAMS at 45 °C, with the rearrangement of amylose and amylopectin occurring. At 75 °C and 90 °C, the short-chain starch produced by chain breakage regroups to form an ordered double helix structure. In general, the granule structure level of HAMS was damaged to different degrees at varying temperatures. HAMS showed gelatinization behavior in alkaline solutions when the temperature is 60 °C. This study expects to provide a model for the gelatinization theory of HAMS systems.


Subject(s)
Amylose , Zea mays , Amylose/chemistry , Temperature , Zea mays/chemistry , Scattering, Small Angle , X-Ray Diffraction , Starch/chemistry
4.
Int J Biol Macromol ; 237: 124187, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990406

ABSTRACT

In this work, Corn Starch (CS)-Lauric acid (LA) complexes prepared by different ultrasound times were explored for multi-scale structure and digestibility. The results showed that the average molecular weight of the CS decreased from 380.478 to 323.989 kDa and the transparency increased to 38.55 % after 30 min of ultrasound treatment. The scanning electron microscope (SEM) results revealed a rough surface and agglomeration of the prepared complexes. The complexing index of the CS-LA complexes increased by 14.03 % compared to the non-ultrasound group. The prepared CS-LA complexes formed a more ordered helical structure and a more dense V-shaped crystal structure through hydrophobic interactions and hydrogen bonding. In addition, fourier transforms infrared spectroscopy and the molecular docking revealed that the hydrogen bonds formed by CS and LA promoted the formation of an ordered structure of the polymer, retarding the diffusion of the enzyme and thus reducing the digestibility of the starch. With correlation analysis, we provided insight into the multi-scale structure-digestibility relationship in the CS-LA complexes, which provided a basis for the relationship between structure and digestibility of lipid-containing starchy foods.


Subject(s)
Starch , Starch/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Hydrogen Bonding , Molecular Weight
5.
Int J Biol Macromol ; 224: 1313-1321, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36306903

ABSTRACT

High amylose corn starch (HACS)-oat ß-glucan (OBG) complex was prepared by ball milling treatment. The morphology and structure of the samples were characterized, and the digestibility of the samples was studied. SEM analysis showed that the grain structure of oat ß-glucan-starch after ball milling showed an irregular aggregate shape. The rheological results indicated that the apparent viscosity of the solution of HACS-OBG complex prepared by ball milling, with the values of both G' and G″ decreasing on the increase of OBG addition. Multi-scale structure analysis showed that the disorder of the crystal structure and short-range structure of the HACS-OBG complex would lead to the decrease of the double helix structure content. In terms of digestibility, the RDS of the complex decreased from 75.88 % to 66.26 %, which suppressed the digestibility of starch. Molecular docking and quantum chemistry techniques further demonstrated the strong hydrogen bond interaction between HACS and OBG and the inhibition rate of OBG on the enzyme, which was conducive to the slow digestion of HACS-OBG complex. Therefore, ball milling treatment can promote the binding of OBG to starch, which may be an effective method for postprandial blood glucose control.


Subject(s)
Starch , beta-Glucans , Starch/chemistry , Molecular Docking Simulation , beta-Glucans/chemistry , Amylose , Viscosity
6.
PLoS One ; 14(11): e0225196, 2019.
Article in English | MEDLINE | ID: mdl-31738786

ABSTRACT

With the widespread usage of Web applications, the security issues of source code are increasing. The exposed vulnerabilities seriously endanger the interests of service providers and customers. There are some models for solving this problem. However, most of them rely on complex graphs generated from source code or regex patterns based on expert experience. In this paper, TAP, which is based on token mechanism and deep learning technology, was proposed as an analysis model to discover the vulnerabilities of PHP: Hypertext Preprocessor (PHP) Web programs conveniently and easily. Based on the token mechanism of PHP language, a custom tokenizer was designed, and it unifies tokens, supports some features of PHP and optimizes the parsing. Besides, the tokenizer also implements parameter iteration to achieve data flow analysis. On the Software Assurance Reference Dataset(SARD) and SQLI-LABS dataset, we trained the deep learning model of TAP by combining the word2vec model with Long Short-Term Memory (LSTM) network algorithm. According to the experiment on the dataset of CWE-89, TAP not only achieves the 0.9941 Area Under the Curve(AUC), which is better than other models, but also achieves the highest accuracy: 0.9787. Further, compared with RIPS, TAP shows much better in multiclass classification with 0.8319 Kappa and 0.0840 hamming distance.


Subject(s)
Deep Learning , Software , Technology , Web Browser , Algorithms , Databases, Factual , ROC Curve
7.
Pancreatology ; 12(1): 74-8, 2012.
Article in English | MEDLINE | ID: mdl-22487480

ABSTRACT

PURPOSE: We present photochemical-induced pancreatic necrosis (PIPN) as a novel induction method for studying pancreatic regeneration in an animal model. METHODS: Photosensitive Rose Bengal was injected through the femoral vein in rats, followed by illumination of the surface of the pancreas with a cool halogen light for a period of 20 min. At 3, 6, and 24 h, and 7, 10, 14, and 20 days, experimental animals were sacrificed; all the animals received intravenous injection with 5-bromo-2-deoxyuridine (BrdU) 1 h prior to sacrifice. RESULTS: At 3-6 h of induction of PIPN, pancreatic necrosis was superficially observed in the illuminated field. At 24 h, there was a slight increase in the depth and width of the lesion along with appearance of vascular congestion and thrombosis in the lesion. On days 7-10, the area of illumination was totally replaced by necrotic pancreatic tissue, inflammatory cell infiltrates, and newly appearing cellular components, including mesenchymal and epithelial cells, which formed tubular complexes. On day 14, clusters of tubular complexes intermingled with acinar cells, which were proven as newly formed acinar tissue by BrdU staining. On day 20, all the lesions had returned to a normal state of pancreatic tissue. CONCLUSION: This study demonstrates the potential of PIPN as a valuable method for production of an animal model for studying healing processes or regeneration of pancreatic tissue after injury.


Subject(s)
Pancreas/pathology , Pancreas/physiology , Animals , Bromodeoxyuridine , Male , Models, Animal , Necrosis , Pancreatic Diseases/pathology , Photochemistry , Rats , Rats, Sprague-Dawley , Regeneration , Rose Bengal
8.
Anat Cell Biol ; 43(2): 157-64, 2010 Jun.
Article in English | MEDLINE | ID: mdl-21189997

ABSTRACT

Selective labeling of small populations of neurons of a given phenotype for conventional neuronal tracing is difficult because tracers can be taken up by all neurons at the injection site, resulting in nonspecific labeling of unrelated pathways. To overcome these problems, genetic approaches have been developed that introduce tracer proteins as transgenes under the control of cell-type-specific promoter elements for visualization of specific neuronal pathways. The aim of this study was to explore the use of tracer gene expression for neuroanatomical tracing to chart the complex interconnections of the central nervous system. Genetic tracing methods allow for expression of tracer molecules using cell-type-specific promoters to facilitate neuronal tracing. In this study, the rat tyrosine hydroxylase (TH) promoter and an adenoviral delivery system were used to express tracers specifically in dopaminergic and noradrenergic neurons. Region-specific expression of the transgenes was then analyzed. Initially, we characterized cell-type-specific expression of GFP or RFP in cultured cell lines. We then injected an adenovirus carrying the tracer transgene into several brain regions using a stereotaxic apparatus. Three days after injection, strong GFP expression was observed in the injected site of the brain. RFP and WGA were expressed in a cell-type-specific manner in the cerebellum, locus coeruleus, and ventral tegmental regions. Our results demonstrate that selective tracing of catecholaminergic neuronal circuits is possible in the rat brain using the TH promoter and adenoviral expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...