Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 42(2): 341-346, 2017 Jan.
Article in Chinese | MEDLINE | ID: mdl-28948741

ABSTRACT

To investigate the anti-platelet adhesive effect and possible mechanisms of Xueshuantong capsule (XST) under flow conditions. Human umbilical vein endothelial cells (HUVECs) and human platelets were employed as experimental materials, and TNF-α (20 µg•L⁻¹) was used to establish vascular endothelial cell injury models. In vivo flow conditions were simulated under controlled shear stress of 0.1 Pa and 0.9 Pa by Bioflux1000 assays accordingly. Anti-platelet adhesive effects of XST at 0.3 g•L⁻¹ were dynamically monitored by microscopic time-lapse photography. Western blotting was employed to detect the VCAM-1 expression on endothelial cells, and the release of 6-keto-PGF1α and TXB2 was tested by radioimmunoassay. The results showed that XST could inhibit the platelets adhesion under both physiological and pathological flow conditions, and the inhibition rate was 15.0% and 34.1% respectively. Under pathological low shear stress or static conditions, XST could significantly inhibit endothelial cells VCAM-1 expression and TXB2 release (P<0.05). These results suggested that XST inhibited platelets adhering to injured endothelium via decreasing VCAM-1 expression and TXA2 secretion from endothelium. From the interactions among blood flow, vascular endothelium and platelets, the anti-thrombosis effects of XST were possibly related to endothelial cells protection and therefore inhibiting platelets adhesion. Under different flow conditions, the antiplatelet adhesion effect of XST was different, and the pathological low shear stress was more conducive to the efficacy of XST.


Subject(s)
Blood Platelets/drug effects , Drugs, Chinese Herbal/pharmacology , Fibrinolytic Agents/pharmacology , Platelet Adhesiveness/drug effects , Capsules , Cell Adhesion , Cells, Cultured , Endothelium, Vascular , Human Umbilical Vein Endothelial Cells/drug effects , Humans
2.
Article in English | MEDLINE | ID: mdl-27738446

ABSTRACT

Objective. To investigate the absorption property of the representative hydrolyzable tannin, namely corilagin, and its hydrolysates gallic acid (GA) and ellagic acid (EA) from the Fructus Phyllanthi tannin fraction (PTF) in vitro. Methods. Caco-2 cells monolayer model was established. Influences of PTF on Caco-2 cells viability were detected with MTT assay. The transport across monolayers was examined for different time points, concentrations, and secretory directions. The inhibitors of P-glycoprotein (P-gp), multidrug resistance proteins (MRPs), organic anion transporting polypeptide (OATP) and sodium/glucose cotransporter 1 (SGLT1), and tight junction modulators were used to study the transport mechanism. LC-MS method was employed to quantify the absorption concentration. Results. The apparent permeability coefficient (Papp) values of the three compounds were below 1.0 × 10-6 cm/s. The absorption of corilagin and GA were much lower than their efflux, and the uptake of both compounds was increased in the presence of inhibitors of P-gp and MRPs. The absorption of EA was decreased in the company of OATP and SGLT1 inhibitors. Moreover, the transport of corilagin, GA, and EA was enhanced by tight junction modulators. Conclusion. These observations indicated that the three compounds in PTF were transported via passive diffusion combined with protein mediated transport. P-gp and MRPs might get involved in the transport of corilagin and GA. The absorption of EA could be attributed to OATP and SGLT1 protein.

3.
Zhongguo Zhong Yao Za Zhi ; 41(5): 818-822, 2016 Mar.
Article in Chinese | MEDLINE | ID: mdl-28875633

ABSTRACT

PNS (total saponins of Panax notognseng, PNS) has a clear effect and wide application prospect for cardiovascular diseases. At the same time, saponins have hemolytic properties, which are related to its molecular structure type and dosage. On one hand, this article summarizes the research progress of PNS in heart cerebrovascular pharmacology pharmacological in recent five years, a number of studies both in vitro and in vivo for overall body, organs, cells and molecules, show that PNS could improve myocardial and cerebral ischemia injury, and it has effects in resisting thrombosis, inflammation, oxidation, atherosclerosis, and modulating vascular endothelial cells function and improving the cerebral ischemia injury etc. On the other hand, the hemolysis effect of PNS is closely related to its molecular structure type and administrating dosage. Different structures bring about different hemolysis activities. Structure-activity relationship suggests that the length of sugar side chains attached to C-20 and the disaccharide connection mode on C-3 may influence the hemolysis activity of PNS. Within the dose range from 2.5 to 250 mg•L⁻¹, PNS has no hemolysis activity. However, PNS exhibits hemolytic properties at high concentrations(≥500 mg•L⁻¹). Based on the hemolytic or anti-hemolysis characteristics of saponins, and dose-response relationship, the rational clinical application of PNS can be guaranteed by controlling the ratio of hemolytic monosaponins in PNS and improving the hemolytic test method.


Subject(s)
Cardiovascular Agents/pharmacology , Hemolytic Agents/pharmacology , Panax notoginseng/chemistry , Saponins/pharmacology , Animals , Hemolytic Agents/adverse effects , Humans , Panax notoginseng/adverse effects , Saponins/adverse effects
4.
Acta Pharmacol Sin ; 36(6): 758-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25864648

ABSTRACT

AIM: Fructus phyllanthi tannin fraction (PTF) from the traditional Tibetan medicine Fructus phyllanthi has been found to inhibit lung and liver carcinoma in mice. In this study we investigated the anticancer mechanisms of PTF in human lung squamous carcinoma cells in vitro. METHODS: Human lung squamous carcinoma cell line (NCI-H1703), human large-cell lung cancer cell line (NCI-H460), human lung adenocarcinoma cell line (A549) and human fibrosarcoma cell line (HT1080) were tested. Cell viability was detected with MTT assay. Cell migration and invasion were assessed using a wound healing assay and a transwell chemotaxis chambers assay, respectively. Cell apoptosis was analyzed with flow cytometric analysis. The levels of apoptosis-related and metastasis-related proteins were detected by Western blot and immunofluorescence. RESULTS: PTF dose-dependently inhibited the viability of the 3 human lung cancer cells. The IC50 values of PTF in inhibition of NCI-H1703, NCI-H460, and A549 cells were 33, 203, and 94 mg/L, respectively. PTF (15, 30, and 60 mg/L) dose-dependently induced apoptosis of NCI-H1703 cells. Treatment of NCI-H1703 and HT1080 cells with PTF significantly inhibited cell migration, and reduced the number of invasive cells through Matrigel. Furthermore, PTF dose-dependently down-regulated the expression of phosphor-ERK1/2, MMP-2 and MMP-9, up-regulated the expression of phosphor-JNK, but had no significant effect on the expression of ERK1/2 or JNK. CONCLUSION: PTF induces cell apoptosis and inhibits the migration and invasion of NCI-H1703 cells by decreasing MPPs expression through regulation of the MAPK pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/drug therapy , Cell Movement/drug effects , Drugs, Chinese Herbal/pharmacology , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Tannins/pharmacology , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inhibitory Concentration 50 , JNK Mitogen-Activated Protein Kinases/metabolism , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Medicine, Tibetan Traditional , Neoplasm Invasiveness , Phosphorylation , Time Factors
5.
Zhongguo Zhong Yao Za Zhi ; 40(23): 4597-602, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-27141669

ABSTRACT

A in vitro platelet aggregation bioassay was developed for the quality control of XST capsules. The in vitro anti-platelet aggregation effect in rats was observed to detect the bioactivity of XST capsules. Panax notoginseng saponins and Xuesaitong lyophilizedpowder for injection were taken as standard control substances to determine the potency. According to the results, XST capsules showeda significant inhibitory effect on thrombin-induced platelet aggregation in a dose-dependent manner. The in vitro anti-platelet activity oflyophilized powder for injection was stabler than that of Panax notoginseng saponins, and so suitable to serve as a standard control substance. The biological potency of XST capsules compared with standard control substance was detected by using parallel line assay. According to the results, the established bioassay method had a good repeatability (RSD 2.92%). The sample test results could pass thereliability test(linear deviation P > 0.05, parallel deviation P > 0.05). This bioassay method could be used as one of the complementary quality control methods for XST capsules.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Panax notoginseng/chemistry , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Animals , Capsules/pharmacology , Male , Rats , Rats, Sprague-Dawley , Saponins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...