Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34111526

ABSTRACT

Neutral lipases-mediated lipolysis and acid lipases-moderated lipophagy are two main processes for degradation of lipid droplets (LDs). However, the individual and interactive roles of these metabolic pathways are not well known across vertebrates. This study explored the roles of lipolysis and lipophagy from the aspect of neutral and acid lipases in zebrafish. We established zebrafish strains deficient in either adipose triglyceride lipase (atgl-/-; AKO fish) or lysosomal acid lipase (lal-/-; LKO fish) respectively, and then inhibited lipolysis in the LKO fish and lipophagy in the AKO fish by feeding diets supplemented with the corresponding inhibitors Atglistatin and 3-Methyladenine, respectively. Both the AKO and LKO fish showed reduced growth, swimming activity, and oxygen consumption. The AKO fish did not show phenotypes in adipose tissue, but mainly accumulated triacylglycerol (TAG) in liver, also, they had large LDs in the hepatocytes, and did not stimulate lipophagy as a compensation response but maintained basal lipophagy. The LKO fish reduced total lipid accumulation in the body but had high cholesterol content in liver; also, they accumulated small LDs in the hepatocytes, and showed increased lipolysis, especially Atgl expression, as a compensatory mechanism. Simultaneous inhibition of lipolysis and lipophagy in zebrafish resulted in severe liver damage, with the potential to trigger mitophagy. Overall, our study illustrates that lipolysis and lipophagy perform individual and interactive roles in maintaining homeostasis of TAG and cholesterol metabolism. Furthermore, the interactive roles of lipolysis and lipophagy may be essential in regulating the functions and form of mitochondria.


Subject(s)
Autophagy , Cholesterol/metabolism , Homeostasis , Lipolysis , Mitochondria/metabolism , Zebrafish , Animals , Hepatocytes/metabolism
2.
Fish Physiol Biochem ; 47(1): 173-188, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33245450

ABSTRACT

The adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL)-mediated lipolysis play important roles in lipid catabolism. ATGL is considered the central rate-limiting enzyme in the mobilization of fatty acids in mammals. Currently, severe fat accumulation has been commonly detected in farmed fish globally. However, the ATGL-mediated lipolysis and the potential synergy among ATGL, HSL, and autophagy, which is another way for lipid breakdown, have not been intensively understood in fish. In the present study, we added Atglistatin as an ATGL-specific inhibitor into the zebrafish diet and fed to the fish for 5 weeks. The results showed that the Atglistatin-treated fish exhibited severe fat deposition, reduced oxygen consumption, and fatty acid ß-oxidation, accompanied with increased oxidative stress and inflammation. Furthermore, the Atglistatin-treated fish elevated total and phosphorylation protein expressions of HSL. However, the free fatty acids and lipase activities in organs were still systemically reduced in the Atglistatin-treated fish, and the autophagy marker LC3 was also decreased in the liver. On the other hand, glycogenolysis was stimulated but blood glucose was higher in the Atglistatin-treated fish. The transcriptomic analysis also provided the hint that the protein turnover efficiency in Atglistatin-treated fish was likely to be accelerated, but the protein content in whole fish was not affected. Taken together, ATGL plays crucial roles in energy homeostasis such that its inhibition causes loss of lipid-sourced energy production, which cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients.


Subject(s)
Energy Metabolism/drug effects , Fish Proteins/antagonists & inhibitors , Lipase/antagonists & inhibitors , Lipid Metabolism/drug effects , Phenylurea Compounds/pharmacology , Animals , Autophagy/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Liver/drug effects , Liver/metabolism , Male , Nutrients/metabolism , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism
3.
Fish Physiol Biochem ; 46(4): 1229-1242, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32144523

ABSTRACT

Many metabolic diseases in fish are often associated with lowered peroxisomal fatty acid (FA) ß-oxidation. However, the physiological role of peroxisomal FA oxidation in lipid metabolism in fish still remains unclear. In the present study, a specific peroxisomal FA ß-oxidation inhibitor, 10,12-tricosadiynoic acid (TDYA), was used to investigate the effects of impaired peroxisomal ß-oxidation on growth performance, health status, and lipid metabolism in Nile tilapia. The results showed that the dietary TDYA treatment did not affect weight gain, but significantly decreased peroxisomal ß-oxidation in the liver, and increased body fat accumulation. The fish with impaired peroxisomal ß-oxidation exhibited higher contents of serum lipid and peroxidation products, and alanine aminotransferase activity, and significantly lowered hepatic activities of superoxide dismutase and catalase. The inhibited peroxisomal ß-oxidation did not enhance mitochondrial ß-oxidation activity, but compensatorily upregulated FA ß-oxidation-related gene expression, and downregulated the gene expressions in lipolysis and lipogenesis. Taken together, TDYA treatment markedly induced lipid accumulation and hepatic oxidative damage via systemically depressing lipid catabolism and antioxidant capacity. Our findings reveal the pivotal roles of peroxisomal ß-oxidation in maintaining health and lipid homeostasis in fish, and could be helpful in understanding metabolic diseases in fish.


Subject(s)
Cichlids/metabolism , Fatty Acids/metabolism , Peroxisomes/metabolism , Analysis of Variance , Animals , Body Weight , Cichlids/growth & development , Diet/veterinary , Dietary Fats/administration & dosage , Dietary Fats/classification , Gene Expression , Lipid Metabolism , Liver/metabolism , Oxidation-Reduction , Random Allocation , Soybean Oil/administration & dosage
4.
Fish Physiol Biochem ; 46(1): 111-123, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31520202

ABSTRACT

Intestinal lipases are fat-digesting enzymes, which play vital roles in lipid absorption in the intestine. To study the regulation of intestinal lipase activity in systemic lipid metabolism in fish, especially in the metabolic diseases caused by high-fat diet (HFD) feeding, we inhibited intestinal lipases in Nile tilapia to investigate the physiological consequences. In the present study, Nile tilapia were firstly fed with HFD (12% fat) for 6 weeks to establish a fatty fish model. Afterwards, Orlistat as a potent intestinal lipase inhibitor was added into the HFD for the following 5-week feeding trial, with two dietary doses (Orlistat16 group, 16 mg/kg body weight; Orlistat32 group, 32 mg/kg body weight). After the trial, both doses of Orlistat treatment significantly reduced intestinal lipase activity, fat absorption, hepatic lipid accumulation, and gene expression of lipogenesis, whereas increased gene expression of lipid catabolism. Moreover, intestinal lipase inhibition increased immune enzyme activities, antioxidant capacity, and gene expression of anti-inflammatory cytokines, whereas lowered gene expression of pro-inflammatory cytokines. Besides, Orlistat could also improve the structure of the intestine and increase expression of intestinal tight-coupling protein. Taken together, intestinal lipase inhibition alleviated the adverse effects caused by HFD in Nile tilapia. Thus, intestinal lipases played key roles in absorbing dietary lipid and could be a promising target in regulating systemic lipid metabolism in fish.


Subject(s)
Cichlids/physiology , Diet, High-Fat , Lipase , Animals , Dietary Fats , Dietary Supplements , Lipid Metabolism , Lipogenesis
5.
Front Physiol ; 10: 1077, 2019.
Article in English | MEDLINE | ID: mdl-31496957

ABSTRACT

Lipophagy degrades lipid droplets (LDs) through the lysosomal degradative pathway, thus plays important roles in regulating lipid metabolism in mammals. However, information on the existence and functions of lipophagy in fish lipid metabolism is still limited. In the present study, we confirmed the existence of lipophagy by observing the structures of LDs sequestered in autophagic vacuoles in the zebrafish liver cell line (ZFL) via electronic microscopy. Moreover, starved cells increased the mRNA expression of the microtubule-associated protein 1A/1B light chain 3 beta (LC3), which is a marker protein for autophagy and protein conversion from LC3-I to LC3-II. Inhibiting autophagy with chloroquine increased significantly the LDs content and decreased fatty acid ß-oxidation and esterification activities in the ZFL cells cultured in the fed state. Furthermore, inhibiting autophagy function downregulated the mRNA expression of the genes and their proteins related to lipid metabolism. Altogether, the present study verified the existence of lipophagy and its essential regulatory roles in lipid metabolism in fish cells.

6.
Article in English | MEDLINE | ID: mdl-31279932

ABSTRACT

Autophagy is a conserved cellular degradation process through which intracellular components are degraded by the lysosome, but its roles in fish metabolism have not been studied in depth. Therefore, the present study aimed to investigate whether autophagy plays a key role in maintaining metabolic homeostasis in fish. In an 8-week feeding trial, Nile tilapia were fed either a control diet with medium fat and medium carbohydrate (Control), or a control diet supplemented with a classic autophagy inhibitor (chloroquine, CQ). CQ supplementation significantly inhibited autophagy and impaired fish growth and protein synthesis, and the glycolysis was stimulated, accompanied by fat accumulation, high oxidative stress and inflammation. Physiological status and gene expressions suggested that impaired autophagy might be at least one cause of the metabolic diseases which has been commonly seen in aquaculture. These results indicate that inhibition of autophagy could significantly affect the metabolism of lipid, carbohydrate and protein in fish; hence, autophagy could play important roles in maintaining homeostasis of nutrient metabolism in cultured fish.


Subject(s)
Autophagy , Cichlids/metabolism , Nutrients/metabolism , Animals , Antioxidants/metabolism , Autophagy/genetics , Cichlids/genetics , Cichlids/growth & development , Fatty Acids/metabolism , Gene Expression Regulation , Glycogen/metabolism , Lipid Metabolism/genetics , Oxidation-Reduction , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
J Physiol ; 597(6): 1585-1603, 2019 03.
Article in English | MEDLINE | ID: mdl-30615194

ABSTRACT

KEY POINTS: In a cold environment, mammals increase their food intake while fish decrease or stop feeding. However, the physiological value of fasting during cold resistance in fish is currently unknown. Fasting for more than 48 h enhanced acute cold resistance in zebrafish, which correlated with lipid catabolism and cell damage attenuation. Lipid catabolism and autophagy were necessary for cold resistance in fish and the inhibition of mitochondrial fatty acid ß-oxidation or autophagy weakened the fasting-induced cold resistance. Repression of mechanistic target of rapamycin (mTOR) signalling pathway by rapamycin largely mimicked the beneficial effects of fasting in promoting cold resistance, suggesting mTOR signalling may be involved in the fasting-induced cold resistance in fish. Our study demonstrates that fasting may be a protective strategy for fish to survive under cold stress. ABSTRACT: In cold environments, most homeothermic animals increase their food intake to supply more energy to maintain body temperature, whereas most poikilothermic animals such as fishes decrease or even stop feeding under cold stress. However, the physiological value of fasting during cold resistance in poikilotherms has not been explained. Here, we show that moderate fasting largely enhanced cold resistance in fish. By using pharmacological (fenofibrate, mildronate, chloroquine and rapamycin) and nutritional approaches (fatty acids diets and amino acids diets) in wild-type or specific gene knock-out zebrafish models (carnitine palmitoyltransferase-1b-deficient strain, CPT1b-/- , or autophagy-related protein 12-deficient strain, ATG12-/- ), we verified that fasting-stimulated lipid catabolism and autophagy played essential roles in the improved cold resistance. Moreover, suppression of the mechanistic target of rapamycin (mTOR) pathway by using rapamycin mostly mimicked the beneficial effects of fasting in promoting cold resistance as either the physiological phenotype or transcriptomic pattern. However, these beneficial effects were largely reduced when the mTOR pathway was activated through high dietary leucine supplementation. We conclude that fasting helps fish to resist cold stress by modulating lipid catabolism and autophagy, which correlates with the mTOR signalling pathway. Therefore, fasting can act as a protective strategy of fish in resisting coldness.


Subject(s)
Acclimatization , Autophagy , Cold-Shock Response , Fasting/metabolism , Lipid Metabolism , Animals , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Cold Temperature , TOR Serine-Threonine Kinases/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...