Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(15): 4400-4407, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568187

ABSTRACT

We developed a magnesium/sodium (Mg/Na) hybrid battery using a hierarchical disk-whisker FeSe2 architecture (HD-FeSe2) as the cathode material and a modified dual-ion electrolyte. The polarizable Se2- anion reduced the Mg2+ migration barrier, and the 3D configuration possessed a large surface area, which facilitated both Mg2+/Na+ cation diffusion and electron transport. The dual-ion salts with NaTFSI in ether reduced the Mg plating/stripping overvoltage in a symmetric cell. The hybrid battery exhibited an energy density of 260.9 Wh kg-1 and a power density of 600.8 W kg-1 at 0.2 A g-1. It showed a capacity retention of 154 mAh g-1 and a Coulombic efficiency of over 99.5% under 1.0 A g-1 after 800 long cycles. The battery also displayed outstanding temperature tolerance. The findings of 3D architecture as cathode material and hybrid electrolyte provide a pathway to design a highly reliable Mg/Na hybrid battery.

2.
Chem Commun (Camb) ; 60(40): 5338-5341, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38668872

ABSTRACT

An ultrahigh-performance magnesium/sodium hybrid-ion battery (MNHB) is developed using ternary CoSe/NiSe2/CuSe2 (CNCS) "micro-flowers" as cathode materials, working with a coordinative [Mg2Cl2][AlCl4]2 and bis(trifluoroethylsulfonyl)imide anionic sodium salt in triglyme electrolyte. After 2000 cycles at 2.0 A g-1, the MNHB shows a stable capacity of 115.5 mA h g-1 and a high Coulombic efficiency exceeding 99.8%. The battery shows very rapid charging, and good stability in extreme environments, providing new opportunities to develop other hybrid-ion systems.

3.
Chem Commun (Camb) ; 60(29): 3918-3921, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38497802

ABSTRACT

Electrode materials optimization is one of the keys to improving the energy storage characteristics of secondary batteries. Herein, a VO2@carbon@SnS2 composite is developed by coating SnS2 quantum dots (QDs) on lamellar VO2@carbon nanorods, yielding a high-performance aluminum-ion battery cathode. SnS2 QDs embedded in VO2@carbon accelerate electron transport, while the in situ coating of carbon improves cycling stability. When cycling at 0.5 A g-1, capacity is maintained at 157.6 mA h g-1 after 200 cycles. Even at 1.0 A g-1, the cathode can be stably cycled 1000 times. Capacity remains at 176.3 mA h g-1 and coulombic efficiency is 99.1% at temperatures below -10 °C after 100 cycles. These findings provide new ideas for the development of QD-modified composites for application in secondary batteries.

4.
Small ; 20(16): e2307071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032166

ABSTRACT

Liquid metals have attracted a lot of attention as self-healing materials in many fields. However, their applications in secondary batteries are challenged by electrode failure and side reactions due to the drastic volume changes during the "liquid-solid-liquid" transition. Herein, a simple encapsulated, mass-producible method is developed to prepare room-temperature liquid metal-infilled microcapsules (LMMs) with highly conductive carbon shells as anodes for lithium-ion batteries. Due to the reasonably designed voids in the microcapsule, the liquid metal particles (LMPs) can expand freely without damaging the electrode structure. The LMMs-based anodes exhibit superior capacity of rete-performance and ultra-long cycling stability remaining 413 mAh g-1 after 5000 cycles at 5.0 A g-1. Ex situ X-ray powder diffraction (XRD) patterns and electrochemical impedance spectroscopy (EIS) reveal that the LMMs anode displays a stable alloying/de-alloying mechanism. DFT calculations validate the electronic structure and stability of the room-temperature LMMs system. These findings will bring some new opportunities to develop high-performance battery systems.

5.
Chemistry ; 30(16): e202302978, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38116914

ABSTRACT

Safe and high-performance secondary batteries using for all-climate conditions with different temperatures are highly required. Here, we develop a three-dimensional ball cactus-like MgV2O4 as cathode material for magnesium-ion (Mg-ion) batteries. After cycling 300 times, the capacity maintains 111.7 mAh g-1, while Coulombic efficiency stabilizes at about 100 %. Under temperatures of 45 °C and -5 °C, the capacities remain stable after 200 cycles. After three rounds of rate-performance tests, the capacity keeps quite stable. It is ascribed to the ball cactus-like morphology buffers the volumetric change during Mg2+ insertion/extraction, and provides sufficient pathways for ion diffusion, which has been verified by constant-current intermittent titration technology. It is believed that the good performance enables the Mg-ion batteries to have a all-climate capability.

6.
Chem Commun (Camb) ; 59(92): 13739-13742, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37909380

ABSTRACT

We developed H2Ti5O11·xH2O on carbon cloth (HTO·xH2O/CC) as a binder-free Zn metal-free anode. This 'rocking chair' battery incorporated a ZnMn2O4/CC cathode, HTO·xH2O/CC anode, and a polyacrylamide-based electrolyte, and exhibited satisfactory flexibility and self-healing. It displayed recoverable capacities after four repetitions of cutting and healing, indicating a potential using as a foldable and wearable battery.

7.
Chem Commun (Camb) ; 59(100): 14815-14818, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38009207

ABSTRACT

Low-cost and safe batteries are considered to be promising energy-storage systems. Here, a metal organic framework (MOF)-derived octahedral Cu1.95S@CoS2 composite is developed as a high-performance cathode of aluminium-ion (Al-ion) batteries. CoS2 nanoparticles on Cu1.95S provide active sites, making AlCl4- intercalation/deintercalation highly reversible, and reducing polarization. Cycling at 0.5 A g-1, Cu1.95S@CoS2 maintains stable capacities of 136.6 and 122.4 mA h g-1 after 200 cycles at room temperature and -10 °C, respectively. Stable rate-performance is also achieved. These findings will accelerate the application of Al-ion batteries and MOF-derived energy-storage composites.

8.
Chem Commun (Camb) ; 59(75): 11216-11219, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37655465

ABSTRACT

A nanowire-on-microrod structured polyaniline (PANI)@FeS2 hybrid was developed via a facile metal-organic framework (MOF)-derived chemical method. The in situ grown PANI nanowires on the surface of pyramidal FeS2 microrods displayed better mechanical flexibility and improved Al-storage performance. The PANI nanowires not only enhanced electron transfer during the electrochemical reaction, but also accommodated the volume expansion of FeS2 during discharge. The PANI@FeS2 hybrid as the cathode in AIBs delivered a reliable battery capacity of 152.8 mA h g-1 along with a Coulombic efficiency of >96.5% after 500 cycles at a current density of 1.5 A g-1. In addition, a high capacity retention of 160.2 mA h g-1 after 150 cycles at 0.5 A g-1 at -10 °C was achieved. These findings provide a feasible strategy by constructing a nanowire-on-microrod hybrid that can be applied in high-performance secondary batteries.

9.
Chem Commun (Camb) ; 59(78): 11688-11691, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37698536

ABSTRACT

A binary metal sulfide hybrid consisting of nanowire-assembled and polypyrrole-coated Co3S4/Cu2S spheres after nitrogen-doped carbon coating (Co3S4/Cu2S@NC) is developed as an anode, which displays a capacity exceeding 412.3 mA h g-1 after 550 cycles under 1.0 A g-1. Recoverable rate-performance and good temperature tolerance under 50 °C and -10 °C are achievable; a full cell delivers 339.5 mA h g-1, indicating promising potential for applications in various conditions.

10.
Dalton Trans ; 52(31): 10789-10794, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37477527

ABSTRACT

The slow redox kinetics and shuttling behavior of the intermediate lithium polysulfides constrain the further development of lithium-sulfur (Li-S) electrochemistry. A yolk-shell In2S3@void@carbon hybrid engineered to host the sulfur for Li-S batteries is prepared by using a multi-layered assembly method. The In2S3/electrolyte interface acted as powerful adsorption and activation sites for soluble polysulfides, which is demonstrated using density functional theory (DFT) calculations. Moreover, the carbon shell provides redundancy for volume-changes during the cycles. The results indicate that yolk-shell In2S3@S@C hybrid cathode shows good reversibility and rate capability, which preserves 563.6 mA h g-1 after 500 cycles at 0.5 C, indicating the potential for developing high-performance battery systems.

11.
Dalton Trans ; 52(21): 7161-7165, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37161790

ABSTRACT

Engineering optimal cathode materials is significant for developing stable magnesium-ion (Mg-ion) batteries. Here, we present a single-crystalline Co3O4 nanoparticle-chain three-dimensional (3D) micro/nanostructure as an Mg-ion battery cathode. The hierarchical morphology is composed of radial nanochains self-assembled by single-crystalline nanoparticles, thus significantly facilitating the transfer of electrons and ions. 3D single-crystalline Co3O4 as an Mg-ion battery cathode displays a stable capacity of 111.7 mA h g-1 after 200 cycles with a decay rate per cycle as low as 0.037%. After four rounds of testing, the rate performance remains stable with a tiny decrease from 125.94 to 124.78 mA h g-1. At temperatures of 45 °C and -5 °C, the cathode still displays good stability and rate-performance. Galvanostatic intermittent titration technique (GITT) results verify a low energy barrier of the Co3O4 cathode. It is expected that the single-crystalline nanoparticle-assembled 3D structure and the stable Mg-storage performance will find broad applications for developing other stable energy-storage materials and their batteries.

12.
Chemistry ; 29(41): e202301127, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37163458

ABSTRACT

Anhui Provincial Engineering Laboratory for Engineering appropriate cathode materials is significant for the development of high-performance aluminum-ion (Al-ion) batteries. Here, a pyramidal metal-organic frameworks (MOFs)-derived FeP@CoP composite was developed as cathode, which exhibits good stability and high capacity. FeP@CoP cathode maintains a high capacity of 168 mAh g-1 after 200 cycles, and displays a stable rate-performance at both room and low temperatures of -10 °C. After three rounds of rate-performance cycling, the FeP@CoP composite recovers 178.2 mAh g-1 at 0.3 A g-1 . Moreover, density functional theory (DFT) calculations verify improved electron-transfer kinetics with narrowed band gap and enhanced density of states. These findings inspire a broad set of studies on MOFs-derived composites for high-performance secondary batteries.

13.
Small ; 19(39): e2302706, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246262

ABSTRACT

Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu2 S nanocages (CoS/Cu2 S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na+ /e- transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu2 S@C-NC as anode displays a high capacity of 435.3 mAh g-1 after 1000 cycles at 2.0 A g-1 (≈3.4 C). Under a higher rate of 10.0 A g-1 (≈17 C), a capacity of as high as 347.2 mAh g-1 is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na+ /e- transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.

14.
Chem Commun (Camb) ; 59(18): 2640-2643, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36779410

ABSTRACT

Wearable flexible electronics has become more and more significant and popular in daily life. Here, a flexible quasi-solid Zn-ion battery consisting of CoZn-metal organic frameworks (MOFs) grown on carbon cloth as an all-in-one cathode working with a hydrogel electrolyte is developed. CoZn MOFs display a blade-like morphology, which is significant for rapid transfer of ions and electrons. The battery bending at angles from 0° to 180° displays high capacities and good capacity retention, and the capacity remains stable as the flexible battery twists to 90°. In addition, the capacity exceeds 101.4 mA h g-1 as the battery is folded to 180° for 30 times, which indicates that the developed Zn-ion batteries would be applicable for a large variety of wearable devices such as foldable cellphones and pads.

15.
Chemistry ; 29(10): e202202950, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36437233

ABSTRACT

A foldable battery with high flexibility provides great potential in various wearable electronic devices for health and fitness tracking, chronic disease management, performance monitoring, navigation tracking, and portable gears for soldiers. We report a highly flexible, self-healing Zn-ion battery with a free-standing cathode that is composed of a 3D gear-like NH4 V4 O10 @C composite on carbon paper. The battery retained a capacity of up to 102.4 mAh g-1 even after being folded 60 times with a high angle of 180°. An aqueous hydrogel consisting polyvinyl alcohol, glycerin and Zn(CF3 SO3 )2 was used as electrolyte, which showed as high as 580 % tensile strain under a loading weight of 78 N. The battery exhibited a better capacity retention of over 100 mAh g-1 and Coulombic efficiency of over 99.8 % after cutting and twisting to 90°, thereby indicating a great self-healing performance. The gear-like geometry greatly improved the volume accommodation due to the increased interval space between the blades and the outward configuration. Meanwhile the Zn2+ ionic conductivity was improved by rapid re-binding of many existing hydroxy groups from the electrolyte and the enhanced contact surface area and diffusion route from the cathode material. The highly flexible, safe aqueous Zn-ion battery opens a practical way to power various carry-on electronics under mechanical agitation.

16.
Materials (Basel) ; 15(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36556653

ABSTRACT

Semiconductor-based composites are potential anodes for Li-ion batteries, owing to their high theoretical capacity and low cost. However, low stability induced by large volumetric change in cycling restricts the applications of such composites. Here, a hierarchical SnO2@Ni6MnO8 composite comprising Ni6MnO8 nanoflakes growing on the surface of a three-dimensional (3D) SnO2 is developed by a hydrothermal synthesis method, achieving good electrochemical performance as a Li-ion battery anode. The composite provides spaces to buffer volume expansion, its hierarchical profile benefits the fast transport of Li+ ions and electrons, and the Ni6MnO8 coating on SnO2 improves conductivity. Compared to SnO2, the Ni6MnO8 coating significantly enhances the discharge capacity and stability. The SnO2@Ni6MnO8 anode displays 1030 mAh g-1 at 0.1 A g-1 and exhibits 800 mAh g-1 under 0.5 A g-1, along with high Coulombic efficiency of 95%. Furthermore, stable rate performance can be achieved, indicating promising applications.

17.
ACS Nano ; 16(9): 15369-15381, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36049053

ABSTRACT

Magnesium/lithium hybrid-ion batteries (MLHBs) combine the advantages of high safety and fast ionic kinetics, which enable them to be promising emerging energy-storage systems. Here, a high-performance MLHB using a modified all-phenyl complex with a lithium bis(trifluoromethanesulfonyl)imide electrolyte and a NiCo2S4 cathode on a copper current collector is developed. A reversible conversion involving a copper collector with NiCo2S4 efficiently avoids the electrolyte dissociation and diffusion difficulties of Mg2+ ions, enabling low polarization and fast redox, which is verified by X-ray absorption near edge structure analysis. Such combination affords the best MLHB among all those ever reported, with a reversible capacity of 204.7 mAh g-1 after 2600 cycles at 2.0 A g-1, and delivers an ultrahigh full electrode-basis energy density of 708 Wh kg-1. The developed MLHB also achieves good rate performance and temperature tolerance at -10 and 50 °C with a low electrolyte consumption. The hybrid-ion battery system presented here could inspire a broad set of engineering potentials for high-safety battery technologies and beyond.

18.
Chem Commun (Camb) ; 58(83): 11677-11680, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36172984

ABSTRACT

High performance aluminium-ion (Al-ion) batteries are of wide interest owing to the high theoretical capacity, abundance of Al metal and good safety. Here, we develop a hierarchical VS2@VS4 composed of a VS4 nanorod array in situ grown on VS2 rose-shaped nanosheets that displays a good electrochemical performance. The VS2@VS4 cathode displays a high capacity of 162.7 mA h g-1 after 200 cycles at -10 °C, and keeps 116.5 mA h g-1 after 500 cycles at room temperature. Rate-performance at -10 °C shows a capacity retention rate of 90%, which indicates the potential for engineering high-performance energy-storage composites.

19.
Chem Commun (Camb) ; 58(51): 7172-7175, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35670315

ABSTRACT

Rechargeable aluminum-ion (Al-ion) batteries have important potential for fast charging and safe energy-storage systems. Here, we develop a composite composed of lamellar V2O3@C nanosheets, which displays high electrochemical properties as an Al-ion battery cathode. The unique structure is conducive to the rapid insertion and release of Al3+ ions, electrolyte infiltration, and improved conductivity. After cycling 500 times, the capacity exceeds 242.5 mA h g-1. Under a low temperature of -10 °C, the capacity remains 150.8 mA h g-1, and the Coulombic efficiency is higher than 98.8%. The V2O3@C also exhibits a good reversibility verified by using ex situ X-ray powder diffraction patterns, while the constant current intermittent titration technology shows a low reaction barrier, which indicates that the lamellar composite presented here could find significant applications for engineering many high-performance energy-storage systems.

20.
Chem Commun (Camb) ; 58(58): 8117-8120, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35770923

ABSTRACT

Engineering flexible and self-healing batteries is significant for wearable electronics. Here, we develop a flexible self-healing Zn-ion battery with a Zn3V2O7(OH)2·2H2O cathode working with a polyvinyl alcohol hydrogel electrolyte. The battery achieves a high capacity and robust structure during switching and self-healing, and keeps a stable potential after cutting/healing several times. After being bent at 30°, 60°, 90°, 120° and 150°, the capacities remain stable, and the battery delivers 78.6 mA h g-1 when repeatedly folding at 90°, displaying the potential for various applications such as foldable cell phones.


Subject(s)
Electric Power Supplies , Electrolytes , Electrodes , Electronics , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...