Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Curr Res Food Sci ; 8: 100679, 2024.
Article in English | MEDLINE | ID: mdl-38304002

ABSTRACT

Recently, the application of biosensors in food safety assessment has gained considerable research attention. Nevertheless, the evaluation of biosensors' sensitivity, accuracy, and efficiency is still ongoing. The advent of machine learning has enhanced the application of biosensors in food security assessment, yielding improved results. Machine learning has been preliminarily applied in combination with different biosensors in food safety assessment, with positive results. This review offers a comprehensive summary of the diverse machine learning methods employed in biosensors for food safety. Initially, the primary machine learning methods were outlined, and the integrated application of biosensors and machine learning in food safety was thoroughly examined. Lastly, the challenges and limitations of machine learning and biosensors in the realm of food safety were underscored, and potential solutions were explored. The review's findings demonstrated that algorithms grounded in machine learning can aid in the early detection of food safety issues. Furthermore, preliminary research suggests that biosensors could be optimized through machine learning for real-time, multifaceted analyses of food safety variables and their interactions. The potential of machine learning and biosensors in real-time monitoring of food quality has been discussed.

2.
Anal Chim Acta ; 1267: 341351, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37257972

ABSTRACT

Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Food Safety , DNA Probes/chemistry , Technology
3.
J Hazard Mater ; 449: 131044, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36821893

ABSTRACT

Nano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal. In the present study, we further explored the potential application of CRISPR-Cas12a and developed a CRISPR-Cas12a-based fluorescence/colorimetric biosensor (UCNPs-Cas12a/hydrogel-MOF-Cas12a) that provides an efficient targeting system for small molecules and protein targets. These two sensors yield multiple types of signal outputs by converting the target molecule into a deoxyribonucleic acid (DNA) signal input system using aptamers, amplifying the DNA signal by catalyzed hairpin assembly (CHA), and then combining CRISPR-Cas12a with various nanomaterials. UCNPs-Cas12a/hydrogel-MOF-Cas12a exhibited prominent sensitivity and stability for the detection of estradiol (E2) and prostate-specific antigen (PSA), and was successfully applied for the detection of these targets in milk and serum samples. A major advantage of the hydrogel-MOF-Cas12a system is that the signal output can be observed directly. When combined with aptamers and nanomaterials, CRISPR-Cas12a can be used to target multiple targets, with a diverse array of signal outputs. Our findings create a foundation for the development of CRISPR-Cas12a-based technologies for application in the fields of food safety, environmental monitoring, and clinical diagnosis.


Subject(s)
Biosensing Techniques , Nucleic Acids , Humans , Male , Colorimetry , CRISPR-Cas Systems , DNA , Environmental Monitoring , Hydrogels , Oligonucleotides , Female
4.
Nanoscale ; 15(10): 5023-5035, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36790132

ABSTRACT

Effective and real-time detection of lactate (LA) content in human sweat has attracted considerable attention from researchers. In this work, a novel electrochemical paper-based analysis device (ePAD) was developed for the non-invasive detection of LA in sweat. The electrocatalytic properties of AuNP/Cu-TCPP(Fe) hybrid nanosheets, which were prepared by an optimised synthetic method, were studied by CV and EIS electrochemical methods for the first time and the working electrode can be fabricated using a drip coating method. The lactate sensor was optimised and validated for usability, adoptability and interpretability. To the best of our knowledge, this was the fastest, lowest detection line and widest linear range method reported to date for the detection of lactate. It achieved the detection limit of 0.91 pM and a linear range from 0.013 nM to 100 mM. The dual catalytic effects of the hybrid NSs shortened the detection time by nearly two times and enhanced the sensitivity approximately two times, an accuracy unmatched until now. Furthermore, this sensor was employed for LA analysis and validated by high performance liquid chromatography (HPLC). The ePAD shows superior biocompatibility, accuracy, and high sensitivity and can be easily manufactured. Hence, it is applicable for the long-term monitoring of sweat LA concentrations in point-of-care testing, athletic testing of athletes and military personnel and other subjects in different extreme environments.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Humans , Lactic Acid/analysis , Sweat/chemistry , Electrochemical Techniques/methods , Electrodes
5.
Bioeng Transl Med ; 8(1): e10318, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684114

ABSTRACT

Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.

6.
Talanta ; 255: 124249, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36610257

ABSTRACT

It is extremely necessary to establish a rapid and high-throughput method to detect mycotoxins in food, because grains and cereals are greatly vulnerable to mycotoxins before and after harvest. In this study, we developed a portable aptasensor based on streptavidin magnetic microspheres (MMPs) and hybridization chain reaction (HCR) to simultaneously detect T-2 toxin and zearalenone (ZEN) in corn and oat flour. The MMPs compete with the aptamer for binding, which releases more H0 and triggers HCR with the H1 intermediate modified using 6-FAM and BHQ-1 and the unmodified H2. Subsequently, placing the HCR system corresponding to T-2 and ZEN in a constant-temperature fluorescence detector resulted in well-recovered fluorescence of the HCR products. T-2 and ZEN exhibited good fluorescence response in the dynamic range of 0.001-10 ng mL-1 and 0.01-100 ng mL-1 with detection limits of 0.1 pg mL-1 and 1.2 pg mL-1, respectively. In addition, this strategy achieved the selective detection of T-2 and ZEN in the spiked corn and oat flour samples. The results are also in good agreement with those obtained using commercial ELISA kits. This developed aptasensor with the characteristics of simple operation and portability has the application potential of establishing sensitive and portable field detection of various mycotoxins.


Subject(s)
Aptamers, Nucleotide , Mycotoxins , T-2 Toxin , Zearalenone , Zearalenone/analysis , T-2 Toxin/analysis , Food Contamination/analysis , Mycotoxins/analysis , Aptamers, Nucleotide/genetics , Zea mays/metabolism , Limit of Detection
7.
Environ Sci Pollut Res Int ; 30(15): 43215-43228, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36652077

ABSTRACT

Antibiotics pollution is an urgent public health issue. Biochar is a kind of promising composite for removal antibiotic in aqueous environment. In this study, a novel magnetic graphoxide/biochar composite (mGO/TBC) was synthesized by simple impregnation method and used as an efficient and recyclable persulfate (PS) activator for degradation and removal of sulfonamides (SAs) and quinolones (QNs) antibiotics. Based on the synergism pre-adsorption and degradation between graphoxide and biochar, the removal rates of mGO/TBC on sarafloxacin hydrochloride, sulfadimethoxine, sulfapyridine, sulfadoxine, sulfamonomethoxine, sulfachloropyridazine, enrofloxacin, and ciprofloxacin were increased above 95%. Moreover, the mGO/TBC could be reused at least seven times after degradation-recovery cycles. Quenching experiment and ESR analysis proved that 1O2, •OH, and SO4•- from mGO/TBC/PS system were the primary oxidation active species to degrade SAs and QNs. It is a promising substrate for antibiotic bioremediation with good application prospects.


Subject(s)
Sulfonamides , Water Pollutants, Chemical , Water , Magnesium Oxide , Anti-Bacterial Agents , Sulfanilamide , Charcoal , Magnetic Phenomena , Tea , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 858(Pt 2): 159977, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36347282

ABSTRACT

A fluorescent biosensor strategy was developed in combination with immunomagnetic separation for rapid and sensitive detection of staphylococcal enterotoxin B (SEB). Magnetic nanoparticles (MNPs) modified with aptamer of SEB could capture the SEB. Then the gold nanoparticles (AuNPs) fluorescent probe was added and a "sandwich structure" was formed between AuNPs, SEB and MNPs. The MNPs-SEB-AuNPs structure could be separated with an additional magnetic field, which resulted the lower signals of AuNPs fluorescent probe. In optimal conditions, the current method displayed a broad quantitative range from 100 to 107 fg/mL and the limit of detection was 3.43 fg/mL. The recovery of SEB-spiked milk samples ranged from 92.00 to 119.00 %, which revealed that the developed method had great accuracy. Furthermore, the method was fast and economical for ultrasensitive detection. Therefore, the fluorescent biosensor based on MNPs-AuNPs is promising for the detection of other environmental and food pollutants.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Fluorescent Dyes , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection
9.
ACS Omega ; 7(43): 39028-39038, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340108

ABSTRACT

Currently, most matrices developed for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) for small-molecule detection are only suitable for the positive or negative ion mode and not the dual-ion mode, except for carbon-based nanomaterials. The lone-pair electrons on the N atom in poly n-vinylcarbazole (PVK) can serve as a Lewis base with strong electron-donation effects, which is favorable for negative ion mode detection. The surface of single-layer graphene oxide (SLGO) contains many oxygen atoms in carboxyl and hydroxyl groups that act as Lewis acids and thereby provides favorable protonation sites for positive ion mode detection. In this study, composite PVK/SLGO was prepared by combining the advantages of amorphous PVK and SLGO. PVK/SLGO was tested as a novel matrix for positive- and negative-ion-mode MALDI-TOF MS for the analysis of amino acids, nucleic acid bases, environmental endocrine disruptors, antibiotics, and various small molecules. PVK/SLGO was compared with PVK, SLGO, and commercially available matrices of 9-aminoacridine (9-AA) and α-cyano-4-hydroxycinnamic acid (CHCA). The PVK/SLGO matrix was demonstrated to be suitable for the positive and negative ion modes, exhibiting high signal intensity and detection sensitivity without background interference. The limits of detection of the aforementioned molecules ranged from 0.1 to 0.0001 and 0.01 to 0.0001 mg/mL in the positive and negative ion modes, respectively. The quantitative determination of enrofloxacin in milk was realized using an internal standard method with a linear range of 0.0001-0.1 mg/mL (R 2 = 0.9991). Furthermore, the PVK/SLGO matrix exhibited high salt tolerance (up to 1000 mmol/L) and stability over 28 consecutive days. Studies regarding its ionization mechanism revealed that the good performance originates from the combined materials acting synergistically. This study provides a foundation for developing bimodal composite matrices and further expands the scope of PVK/SLGO applications.

10.
Biosens Bioelectron ; 218: 114792, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36242902

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems exhibit significant potential in developing biosensing technology due to their collateral cleavage capabilities. Herein, we introduced the collateral cleavage activity of CRISPR/Cas14a to activate DNA hydrogel for ultrasensitive detection of the myocardial infarction biomarker creatine kinase MB (CK-MB). In this strategy, the designed CRISPR/Cas14a system can be activated by introducing complementary DNA (cDNA) derived from competitive dissociation and exponential amplification (EXPAR), which is positively correlated with creatine kinase isoenzyme (CK-MB) concentration. Then the activated Cas14a protein can be utilized to indiscriminately cleave the DNA hydrogel cross-linker strand, leading to the degradation of the gel matrix and thus releasing the pre-encapsulated PtNPs/Cu-TCPP(Fe). PtNPs/Cu-TCPP(Fe) can trigger the TMB reaction, leading to an increase in absorbance value at 450 nm, thus enabling the quantitative detection of CK-MB. The proposed strategy combines CRISPR/Cas14a with DNA hydrogel for the first time, improving the programmability of DNA hydrogel and providing a reliable, sensitive, and versatile detection platform for trace non-nucleic acid targets.


Subject(s)
Biosensing Techniques , Hydrogels , DNA, Complementary , Isoenzymes/genetics , DNA , Creatine Kinase, MB Form , Biomarkers , CRISPR-Cas Systems/genetics
11.
RSC Adv ; 12(24): 15215-15221, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35693227

ABSTRACT

Traditional matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) are usually crystalline small molecules. The heterogeneous co-crystallization of the analyte and the matrix creates a sweet spot effect and reduces point-to-point reproducibility. In this study, an amorphous poly-N-vinylcarbazole polymer (PVK) was studied as a novel matrix for MALDI-TOF MS to detect various low molecular weight compounds (LMWCs) in the negative ion mode. The PVK achieved excellent matrix action and showed high sensitivity, good salt tolerance, and reproducibility. These results significantly broaden the design rules for new and efficient polymeric MALDI matrices.

12.
Anal Chim Acta ; 1207: 339811, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35491042

ABSTRACT

Fumonisin (FB) is a common mycotoxin in corn, wheat, oats, and their related products. FB1 is the most predominant among fumonisins and is responsible for severe food contamination that may have deleterious effects on public health. Therefore, the demand for achieving sensitive detection of FB1 is becoming more and more pressing. In the present study, a creative biosensor for FB1 detection was developed based on fluorescence resonance energy transfer between upconversion nanoparticles (UCNPs) and graphene oxide (GO) with catalytic hairpin assembly (CHA) target recycling and amplification. In the presence of FB1, UCNPs were bound to the CHA amplification products away from the GO surface. Simultaneously, a strong fluorescence signal was produced at 980 nm (near-infrared light). The correlation between the concentration of FB1 and the fluorescence intensity exhibited a high relevance (R2 = 0.9971) ranging from 0.032 to 500 ng mL-1, and the method reached a considerably low limit of detection (0.0121 ng mL-1). It could be applied for the detection of FB1 in corn, oats, and infant supplements. The sensitive detection of FB1 proves the application potential of this method on food safety detection. This biosensor can enable high-throughput fungal toxin detection by allowing the use of various aptamers.


Subject(s)
Biosensing Techniques , Fumonisins , Mycotoxins , Nanoparticles , Graphite , Humans , Mycotoxins/analysis , Zea mays
13.
Environ Sci Pollut Res Int ; 29(46): 69439-69449, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35567682

ABSTRACT

We designed and synthesised a magnetic adsorbent (Fe3O4@Si-OH@CS-Glu) combining chitosan-silanol groups with glutaraldehyde as a cross-linking agent, which has improved physicochemical properties and can be used to remove multiple heavy metals and bacteria from polluted water. The adsorbent was characterised with SEM, XRD, FTIR, BET, VSM, and zeta potential. Under optimum conditions, the adsorption efficiencies of Fe3O4@Si-OH@CS-Glu for Cr6+, As5+, Hg2+, and Se6+ were as high as 90.5%, 73.5%, 91.6%, and 100% respectively. In addition, Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) can be removed after 2-4 adsorption cycles with 2.5 mg Fe3O4@Si-OH@CS-Glu. The main adsorption mechanism of the adsorbent for heavy metals and bacteria is electrostatic adsorption. Overall, the synthesised Fe3O4@Si-OH@CS-Glu adsorbent showed high removal efficiency and adsorption capacity with a stable structure and easy separation. It has promising applications for the removal of heavy metals and bacteria from water.


Subject(s)
Chitosan , Mercury , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Bacteria , Chitosan/chemistry , Glutaral , Kinetics , Silanes , Water/chemistry , Water Pollutants, Chemical/chemistry
14.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408487

ABSTRACT

The efficient capture of multi-pollutant residues in food is vital for food safety monitoring. In this study, in-situ-fabricated magnetic MIL-53(Al) metal organic frameworks (MOFs), with good magnetic responsiveness, were synthesized and applied for the magnetic solid-phase extraction (MSPE) of chloramphenicol, bisphenol A, estradiol, and diethylstilbestrol. Terephthalic acid (H2BDC) organic ligands were pre-coupled on the surface of amino-Fe3O4 composites (H2BDC@Fe3O4). Fe3O4@MIL-53(Al) MOF was fabricated by in-situ hydrothermal polymerization of H2BDC, Al (NO3)3, and H2BDC@Fe3O4. This approach highly increased the stability of the material. The magnetic Fe3O4@MIL-53(Al) MOF-based MSPE was combined with high-performance liquid chromatography-photo diode array detection, to establish a novel sensitive method for analyzing multi-pollutant residues in milk. This method showed good linear correlations, in the range of 0.05-5.00 µg/mL, with good reproducibility. The limit of detection was 0.004-0.108 µg/mL. The presented method was verified using a milk sample, spiked with four pollutants, which enabled high-throughput detection and the accuracies of 88.17-107.58% confirmed its applicability, in real sample analysis.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Animals , Chromatography, High Pressure Liquid/methods , Environmental Pollutants/analysis , Limit of Detection , Magnetic Phenomena , Metal-Organic Frameworks/chemistry , Milk/chemistry , Reproducibility of Results , Solid Phase Extraction/methods
15.
Talanta ; 243: 123338, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35240368

ABSTRACT

Swift and effective diagnosis of acute myocardial infarction (AMI) is critical to patient survival due to its serious life-threatening effects and increasing incidence. Creatine kinase MB (CK-MB) is one of the markers of AMI. In this work, we enabled a portable visual quantitative assay of CK-MB by incorporating target-responsive DNA hydrogel with a microfluidic chip. The CK-MB aptamer and the complementary short DNA strand were grafted onto the polyacrylamide strand separately and formed the hydrogel by base-paired linkage. Upon introduction of CK-MB, the aptamer bound to CK-MB. This led to hydrogel dissociation and subsequent release of pre-trapped gold nanoparticles (AuNPs), which is proportional to the concentration of CK-MB. To achieve portable on-site detection, we further combined the hydrogel with a microfluidic chip and utilized the color change caused by the released AuNPs to take picture and analyze the average gray value. Then, as low as 0.027 nM CK-MB could be detected by cell phone. With good portability, visualization, and simple sample handling, this method has great potential for quantitative point-of-care testing (POCT) of targets in resource-constrained settings.


Subject(s)
Gold , Metal Nanoparticles , Biomarkers , Creatine Kinase , Creatine Kinase, MB Form , DNA , Humans , Hydrogels , Microfluidics , Point-of-Care Testing
16.
Trends Food Sci Technol ; 122: 211-222, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35250172

ABSTRACT

BACKGROUND: In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH: This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS: The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.

17.
Ecotoxicol Environ Saf ; 231: 113177, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35030527

ABSTRACT

The objective of this study was to investigate the effects of exposure to endotoxin on the reproductive performance of humans and animals in pregnancy and delivery period. Mucin is considered to play a critical role in protecting the tissue epithelium. At pregnancy period, the MUC2 expression of uterus in the High LPS group was significantly higher than that in the Control group. The glycosaminoglycans of gland cells were secreted into the uterine cavity to protect the uterus. Then, the MUC2 layer became thinner, and LPS entered the lamina propria of the uterus. The mRNA expression of tight junction proteins showed a marked drop, and morphological damage of the uterus occurred. Subsequently, the glycosaminoglycans of gland cells in the High LPS and Low LPS groups increased with the increasing LPS dose, and the damage to the endometrial epithelium was repaired in female mice at Day 5 postdelivery. A low dose of LPS activated the PI3K/AKT signaling pathways to increase the glycosaminoglycans particles, while a high dose of LPS inhibited the PI3K/AKT signaling pathway to decrease the glycosaminoglycans particles. Taken together, our results suggest that gland cells secreted glycosaminoglycans particles into the uterine cavity by exocytosis to increase the thickness of the mucus layer to protect the uterus and that this process was regulated by PI3K/AKT signaling pathways.


Subject(s)
Lipopolysaccharides , Phosphatidylinositol 3-Kinases , Animals , Epithelial Cells/metabolism , Female , Lipopolysaccharides/toxicity , Mice , Mucin-2 , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
18.
Talanta ; 237: 122901, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736716

ABSTRACT

Raman spectroscopy combined with artificial intelligence algorithms have been widely explored and focused on in recent years for food safety testing. It is still a challenge to overcome the cumbersome culture process of bacteria and the need for a large number of samples, which hinder qualitative analysis, to obtain a high classification accuracy. In this paper, we propose a method based on Raman spectroscopy combined with generative adversarial network and multiclass support vector machine to classify foodborne pathogenic bacteria. 30,000 iterations of generative adversarial network are trained for three strains of bacteria, generative model G generates data similar to the actual samples, discriminant model D verifies the accuracy of the generated data, and 19 feature variables are obtained by selecting the feature bands according to the Raman spectroscopy pattern. Better classification results are obtained by optimising the parameters of the multi-class support vector machine, etc. Our detection and classification method not only solves the problem of needing a large number of samples as training set, but also improves the accuracy of the classification model. Therefore, this GAN-SVM classification model provides a new idea for the detection of bacteria based on Raman spectroscopy technology combined with artificial intelligence algorithms.


Subject(s)
Spectrum Analysis, Raman , Support Vector Machine , Algorithms , Artificial Intelligence , Bacteria
19.
Anal Chem ; 93(50): 16922-16931, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34879197

ABSTRACT

In recent years, the combination of DNA nanotechnology and biosensing has been extensively reported. Herein, we attempted to develop a dual sensitization smartphone colorimetric strategy based on rolling circle amplification (RCA) coils gathering Au tetrahedra and explore its application. The dual sensitization effect of this strategy was achieved by rolling circle amplification (RCA) and Au tetrahedra. Under the initiation of the complementary DNA, a large number of ssDNA were generated, achieving amplification of the reaction signal. At the same time, due to the formation of Au tetrahedra, more gold nanoparticles could be gathered under the same conditions, and the signal would be amplified again. Using software ImageJ, the gray value of the reaction solution can be analyzed, detecting the target timely under the practical conditions of lack of equipment. By selecting aptamers with strong binding affinity, we applied this strategy to detect creatine kinase isoenzymes (CK-MB), showing a limit of detection of 0.8 pM, which performed well in actual detection and can meet the needs for real-time detection of CK-MB. Therefore, a universal detection platform was developed, which has broad application prospects in biosensing, clinical diagnosis, food detection, and other fields.


Subject(s)
Colorimetry , Metal Nanoparticles , Gold , Nanotechnology , Smartphone
20.
J Cell Mol Med ; 25(12): 5341-5350, 2021 06.
Article in English | MEDLINE | ID: mdl-33942488

ABSTRACT

Sestrin2 (SESN2) is a conserved stress-inducible protein (also known as hypoxia-inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well-documented roles in hypoxia-related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia-related diseases, such as cancer, respiratory-related diseases, cardiovascular diseases and cerebrovascular diseases.


Subject(s)
Cardiovascular Diseases/pathology , Cerebrovascular Disorders/pathology , Hypoxia/physiopathology , Neoplasms/pathology , Nuclear Proteins/metabolism , Peroxidases/metabolism , Respiratory Tract Diseases/pathology , Animals , Cardiovascular Diseases/metabolism , Cerebrovascular Disorders/metabolism , Endoplasmic Reticulum Stress , Humans , Neoplasms/metabolism , Nuclear Proteins/genetics , Oxidative Stress , Peroxidases/genetics , Reactive Oxygen Species , Respiratory Tract Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...