Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Appl Environ Microbiol ; 90(4): e0119723, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38551353

ABSTRACT

Klebsiella pneumoniae, especially hypervirulent K. pneumoniae (hvKP), is a common opportunistic pathogen that often causes hospital- and community-acquired infections. Capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. Some phages encode depolymerases that can recognize and degrade bacterial polysaccharides. In this study, the lytic bacteriophage vB_KpnP_ZK1 (abbreviated as ZK1) was isolated using serotype K1 hvKP as the host. Although amino acid sequence BLAST analysis indicated that the tail fiber protein Depo16 of phage ZK1 showed no significant similarity to any reported phage depolymerases, it displayed enzymatic activities that are characteristic of phage depolymerases. After expression and purification, Depo16 could efficiently remove the capsular polysaccharide layer that surrounds the surface of serotype K1 K. pneumoniae. Although no bactericidal activity was detected, Depo16 makes serotype K1 K. pneumoniae sensitive to peritoneal macrophages (PMs). In addition, in a mouse bacteremia model of serotype K1 K. pneumoniae, 25 µg of Depo16 was effective in significantly prolonging survival. Depo16 treatment can reduce the bacterial load in blood and major tissues and alleviate tissue damage in mice. This indicates that the putative depolymerase Depo16 is a potential antibacterial agent against serotype K1 K. pneumoniae infections.IMPORTANCEKlebsiella pneumoniae often causes hospital-acquired infections and community-acquired infections. Capsular polysaccharide (CPS) is one of the crucial virulence factors of K. pneumoniae. K1 and K2 capsular-type K. pneumoniae strains are the most prevalent serotypes of hypervirulent K. pneumoniae (hvKP). In this study, a novel K. pneumoniae phage named vB_KpnP_ZK1 was isolated, and its putative depolymerase Depo16 showed low homology with other reported phage depolymerases. Depo16 can specifically degrade the K. pneumoniae K1 capsule making this serotype sensitive to peritoneal macrophages. More importantly, Depo16 showed a significant therapeutic effect in a mouse bacteremia model caused by serotype K1 K. pneumoniae. Thus, Depo16 is a potential antibacterial agent to combat serotype K1 K. pneumoniae infections.


Subject(s)
Bacteremia , Bacteriophages , Community-Acquired Infections , Klebsiella Infections , Animals , Mice , Klebsiella pneumoniae , Bacteriophages/genetics , Klebsiella Infections/therapy , Klebsiella Infections/microbiology , Virulence Factors/metabolism , Polysaccharides, Bacterial , Anti-Bacterial Agents
2.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331785

ABSTRACT

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Subject(s)
Streptococcal Infections , Streptococcus suis , Humans , Animals , Swine , Endothelial Cells/metabolism , Serogroup , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Brain/metabolism , Apoptosis , Ribosomal Proteins/metabolism , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology
3.
Sci Total Environ ; 916: 170076, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220020

ABSTRACT

Bacteriophages (phages) can significantly influence the composition and functions of their host communities, and enhance host pathogenicity via the transport of phage-encoded virulence genes. Phages are the main component of animal gut viruses, however, there are few reports on the piglet gut phageome and its contribution to virulence genes. Here, a total of 185 virulence genes from 59,955 predicted genes of gut phages in weaned piglets were identified, with 0.688 % of the phage contigs coding for at least one virulence gene. The virulence gene pblA was the most abundant, with various virulence genes significantly correlated with gut phages and their encoded mobile gene element (MGE) genes. Importantly, multiple virulence genes and MGE genes coexist in some phage sequences, and up to 12 virulence genes were detected in a single phage sequence, greatly increasing the risk of phage-mediated transmission of virulence genes into the bacterial genome. In addition, diarrhoea has driven changes in the composition and structure of phage and bacterial communities in the intestinal tract of weaned piglets, significantly increasing the abundance of phage contigs encoding both virulence genes and MGE genes in faecal samples, which potentially increases the risk of phage-mediated virulence genes being transfected into the gut bacterial genome. In summary, this study expands our understanding of the gut microbiome of piglets, advances our understanding of the potential role of phages in driving host pathogenesis in the gut system, and provides new insights into the sources of virulence genes and genetic evolution of bacteria in pig farm environments.


Subject(s)
Bacteriophages , Virome , Animals , Swine , Virulence , Bacteriophages/genetics , Bacteria/genetics , Feces/microbiology
4.
Life Sci ; 336: 122340, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38092143

ABSTRACT

AIMS: Structural cells play an important role in regulating immune cells during infection. Our aim was to determine whether structural porcine tracheal epithelial cells (PTECs) can regulate alveolar macrophages (AMs) to prevent bacterial pneumonia, explore the underlying mechanism(s) and therapeutic target. MATERIALS AND METHODS: Actinobacillus pleuropneumoniae (APP) was used as the model strain for infection studies. Small RNA sequencing was used to identify differentially abundant exosome-derived miRNAs. The role of PTECs exosome-derived miR-21-5p in regulating AMs autophagy, pyroptosis, reactive oxygen species (ROS) was determined using RT-qPCR, western-blotting, flow cytometry, immunohistochemistry. Luciferase reporter assays were conducted to identify potential binding targets of miR-21-5p. The universality of miR-21-5p action on resistance to bacterial pulmonary infection was demonstrated using Klebsiella pneumoniae or Staphylococcus aureus in vitro and in vivo infection models. KEY FINDINGS: MiR-21-5p was enriched in PETCs-derived exosomes, which protected AMs against pulmonary bacterial infection. Mechanistically, miR-21-5p targeted PIK3CD, to promote autophagy of AMs, which reduced the pyroptosis induced by APP infection via inhibiting the over-production of ROS, which in turn suppressed the over-expression of pro-inflammatory cytokines, and increased bacterial clearance. Importantly, the protective effect and mechanism of miR-21-5p were universal as they also occurred upon challenge with Klebsiella pneumoniae and Staphylococcus aureus. SIGNIFICANCE: Our data reveals miR-21-5p can promote pulmonary resistance to bacterial infection by inhibiting pyroptosis of alveolar macrophages through the PIK3CD-autophagy-ROS pathway, suggesting PIK3CD may be a potential therapeutic target for bacterial pneumonia.


Subject(s)
Exosomes , MicroRNAs , Pneumonia, Bacterial , Animals , Swine , Pyroptosis , Macrophages, Alveolar/metabolism , Exosomes/metabolism , Reactive Oxygen Species/metabolism , MicroRNAs/metabolism , Epithelial Cells/metabolism , Autophagy/genetics
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068990

ABSTRACT

Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 µg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 µg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.


Subject(s)
Aerococcus , Bacteremia , Bacteriophages , Streptococcal Infections , Streptococcus suis , Animals , Swine , Humans , Mice , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Bacteremia/microbiology , Disease Models, Animal
6.
Sci Rep ; 13(1): 23081, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38155220

ABSTRACT

Aiming at the problem of easy misdetection and omission of small targets of long-distance vehicles in detecting vehicles in traffic scenes, an improved YOLOX_S detection model is proposed. Firstly, the redundant part of the original YOLOX_S network structure is clipped using the model compression strategy, which improves the model inference speed while maintaining the detection accuracy; secondly, the Resunit_CA structure is constructed by incorporating the coordinate attention module in the residual structure, which reduces the loss of feature information and improves the attention to the small target features; thirdly, in order to obtain richer small target features, the PAFPN structure tail to add an adaptive feature fusion module, which improves the model detection accuracy; finally, the loss function is optimized in the decoupled head structure, and the Focal Loss loss function is used to alleviate the problem of uneven distribution of positive and negative samples. The experimental results show that compared with the original YOLOX_S model, the improved model proposed in this paper achieves an average detection accuracy of 77.19% on this experimental dataset. However, the detection speed decreases to 29.73 fps, which is still a large room for improvement in detection in real-time. According to the visualization experimental results, it can be seen that the improved model effectively alleviates the problems of small-target missed detection and multi-target occlusion.

7.
J Am Chem Soc ; 145(46): 25080-25085, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37948671

ABSTRACT

Comparison of biosynthetic gene clusters (BGCs) found in devastating plant pathogens and biocontrol fungi revealed an uncharacterized and conserved polyketide BGC. Genome mining identified the associated metabolite to be treconorin, which has a terpene-like, trans-fused 5,7-bicyclic core that is proposed to derive from a (4 + 3) cycloaddition. The core is esterified with d-glucose, which derives from the glycosidic cleavage of a trehalose ester precursor. This glycomodification strategy is different from the commonly observed glycosylation of natural products.


Subject(s)
Polyketides , Terpenes , Multigene Family , Fungi/genetics
8.
Microbiol Spectr ; : e0530422, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750730

ABSTRACT

Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.

9.
Curr Opin Struct Biol ; 82: 102664, 2023 10.
Article in English | MEDLINE | ID: mdl-37544111

ABSTRACT

Since the outbreak of the COVID-19 pandemic, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) have been demonstrated to be powerful and efficient tools in structural studies of distinct conformational states of the trimeric spike protein of SARS-CoV-2 and the VOCs as well as the intact virion. Cryo-EM has also contributed greatly to revealing the molecular basis of receptor recognition and antibody neutralization of the S trimer. Additionally, it has provided structural insights into the enhanced transformation and immune evasion of the VOCs, thus facilitating antiviral antibody and drug discovery. In this review, we summarize the contributions of cryo-EM and cryo-ET in revealing the structures of SARS-CoV-2 S trimer and intact virion and the mechanisms of receptor binding and antibody neutralization. We also highlight their prospective utilities in the development of vaccines and future therapeutics against emerging SARS-CoV-2 variants and other epidemic viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cryoelectron Microscopy , Pandemics , Electron Microscope Tomography , Prospective Studies , Virion
10.
J Dairy Sci ; 106(12): 9174-9185, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641240

ABSTRACT

Bovine mastitis is the most common and costly disease affecting dairy cattle throughout the world. Enterococcus faecalis is one of the environmental origin mastitis-causing pathogens. The treatment of bovine mastitis is primarily based on antibiotics. Due to the negative impact of developing antibiotic resistance and adverse effects on soil and water environments, the trend toward use of nonantibiotic treatments is increasing. Phages may represent a promising alternative treatment strategy. However, it is unknown whether phages have therapeutic effects on E. faecalis-induced mastitis. Thus, the objective of this study was to investigate the degree of protection conferred by a phage during murine mastitis caused by multidrug-resistant E. faecalis. Enterococcus faecalis was isolated from the milk of dairy cows with mastitis, and a phage was isolated using the E. faecalis isolates as hosts. The bactericidal ability of the phage against E. faecalis and the ability to prevent biofilm formation were determined in vitro. The therapeutic potential of the phage on murine mastitis was evaluated in vivo. We isolated 14 strains of E. faecalis from the milk of cows with mastitis, all of which exhibited multidrug resistance, and most (10/14) could form strong biofilms. Subsequently, a new phage (EF-N13) was isolated using the multidrug-resistant E. faecalis N13 (isolated from mastitic milk) as the host. The phage EF-N13 belongs to the family Myoviridae, which has short latent periods (5 min) and high bursts (284 pfu/cell). The genome of EF-N13 lacked bacterial virulence-, antibiotic resistance-, and lysogenesis-related genes. Furthermore, bacterial loading in the raw milk medium was significantly reduced by EF-N13 and was unaffected by potential IgG antibodies. In fact, EF-N13 could effectively prevent the formation of biofilm by multidrug-resistant E. faecalis. All of these characteristics suggest that EF-N13 has potential as mastitis therapy. In vivo, 1 × 105 cfu/gland of multidrug-resistant E. faecalis N13 resulted in mastitis development within 24 h. A single dose of phage EF-N13 (1 × 104, 1 × 105, or 1 × 106 pfu/gland) could significantly decrease bacterial counts in the mammary gland at 24 h postinfection. Histopathological observations demonstrated that treatment with phage EF-N13 effectively alleviated mammary gland inflammation and damage. This effect was confirmed by the lower levels of proinflammatory cytokines IL-6, IL-1ß, and tumor necrosis factor-α in the mammary gland treated with phage EF-N13 compared with those treated with phosphate-buffered saline. Overall, the data underscored the potential of phage EF-N13 as an alternative therapy for bovine mastitis caused by multidrug-resistant E. faecalis.


Subject(s)
Bacteriophages , Cattle Diseases , Mastitis, Bovine , Animals , Cattle , Female , Mice , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Enterococcus faecalis , Mastitis, Bovine/therapy , Mastitis, Bovine/microbiology
11.
J Agric Food Chem ; 71(30): 11502-11519, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37471583

ABSTRACT

Natural products biosynthesized from biocontrol fungi in the rhizosphere can have both beneficial and deleterious effects on plants. Herein, we performed a comprehensive analysis of natural product biosynthetic gene clusters (BGCs) from the widely used biocontrol fungus Trichoderma afroharzianum T22 (ThT22). This fungus encodes at least 64 BGCs, yet only seven compounds and four BGCs were previously characterized or mined. We correlated 21 BGCs of ThT22 with known primary and secondary metabolites through homologous BGC comparison and characterized one unknown BGC involved in the biosynthesis of eujavanicol A using heterologous expression. In addition, we performed untargeted transcriptomics and metabolic analysis to demonstrate the activation of silent ThT22 BGCs via the "one strain many compound" (OSMAC) approach. Collectively, our analysis showcases the biosynthetic capacity of ThT22 and paves the way for fully exploring the roles of natural products of ThT22.


Subject(s)
Biological Products , Hypocreales , Gene Expression Profiling , Hypocreales/genetics , Multigene Family , Biosynthetic Pathways/genetics
12.
Polymers (Basel) ; 15(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37376375

ABSTRACT

FRP-confined concrete core-encased rebar (FCCC-R) is a novel composite structure that has recently been proposed to effectively delay the buckling of ordinary rebar and enhance its mechanical properties by utilizing high-strength mortar or concrete and an FRP strip to confine the core. The purpose of this study was to study the hysteretic behavior of FCCC-R specimens under cyclic loading. Different cyclic loading systems were applied to the specimens and the resulting test data were analyzed and compared, in addition to revealing the mechanism of elongation and mechanical properties of the specimens under the different loading systems. Furthermore, finite-element simulation was performed for different FCCC-Rs using the ABAQUS software. The finite-element model was also used for the expansion parameter studies to analyze the effects of different influencing factors, including the different winding layers, winding angles of the GFRP strips, and the rebar-position eccentricity, on the hysteretic properties of FCCC-R. The test result indicates that FCCC-R exhibits superior hysteretic properties in terms of maximum compressive bearing capacity, maximum strain value, fracture stress, and envelope area of the hysteresis loop when compared to ordinary rebar. The hysteretic performance of FCCC-R increases as the slenderness ratio is increased from 10.9 to 24.5 and the constraint diameter is increased from 30 mm to 50 mm, respectively. Under the two cyclic loading systems, the elongation of the FCCC-R specimens is greater than that of ordinary rebar specimens with the same slenderness ratio. For different slenderness ratios, the range of maximum elongation improvement is about 10% to 25%, though there is still a large discrepancy compared to the elongation of ordinary rebar under monotonic tension. Despite the maximum compressive bearing capacity of FCCC-R is improved under cyclic loading, the internal rebars are more prone to buckling. The results of the finite-element simulation are in good agreement with the experimental results. According to the study of expansion parameters, it is found that the hysteretic properties of FCCC-R increase as the number of winding layers (one, three, and five layers) and winding angles (30°, 45°, and 60°) in the GFRP strips increase, while they decrease as the rebar-position eccentricity (0.15, 0.22, and 0.30) increases.

13.
Commun Biol ; 6(1): 531, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193829

ABSTRACT

The eukaryotic chaperonin TRiC/CCT assists the folding of about 10% of cytosolic proteins through an ATP-driven conformational cycle, and the essential cytoskeleton protein tubulin is the obligate substrate of TRiC. Here, we present an ensemble of cryo-EM structures of endogenous human TRiC throughout its ATPase cycle, with three of them revealing endogenously engaged tubulin in different folding stages. The open-state TRiC-tubulin-S1 and -S2 maps show extra density corresponding to tubulin in the cis-ring chamber of TRiC. Our structural and XL-MS analyses suggest a gradual upward translocation and stabilization of tubulin within the TRiC chamber accompanying TRiC ring closure. In the closed TRiC-tubulin-S3 map, we capture a near-natively folded tubulin-with the tubulin engaging through its N and C domains mainly with the A and I domains of the CCT3/6/8 subunits through electrostatic and hydrophilic interactions. Moreover, we also show the potential role of TRiC C-terminal tails in substrate stabilization and folding. Our study delineates the pathway and molecular mechanism of TRiC-mediated folding of tubulin along the ATPase cycle of TRiC, and may also inform the design of therapeutic agents targeting TRiC-tubulin interactions.


Subject(s)
Adenosine Triphosphatases , Protein Folding , Humans , Adenosine Triphosphatases/metabolism , Tubulin/metabolism , Cryoelectron Microscopy , Models, Molecular
14.
Sci Adv ; 9(11): eade1207, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36921056

ABSTRACT

The cytoskeletal proteins tubulin and actin are the obligate substrates of TCP-1 ring complex/Chaperonin containing TCP-1 (TRiC/CCT), and their folding involves co-chaperone. Through cryo-electron microscopy analysis, we present a more complete picture of TRiC-assisted tubulin/actin folding along TRiC adenosine triphosphatase cycle, under the coordination of co-chaperone plp2. In the open S1/S2 states, plp2 and tubulin/actin engaged within opposite TRiC chambers. Notably, we captured an unprecedented TRiC-plp2-tubulin complex in the closed S3 state, engaged with a folded full-length ß-tubulin and loaded with a guanosine triphosphate, and a plp2 occupying opposite rings. Another closed S4 state revealed an actin in the intermediate folding state and a plp2. Accompanying TRiC ring closure, plp2 translocation could coordinate substrate translocation on the CCT6 hemisphere, facilitating substrate stabilization and folding. Our findings reveal the folding mechanism of the major cytoskeletal proteins tubulin/actin under the coordination of the biogenesis machinery TRiC and plp2 and extend our understanding of the links between cytoskeletal proteostasis and related human diseases.


Subject(s)
Actins , Cytoskeletal Proteins , MARVEL Domain-Containing Proteins , Tubulin , Humans , Actins/metabolism , Cryoelectron Microscopy , MARVEL Domain-Containing Proteins/metabolism , Molecular Chaperones/metabolism , Protein Folding , Proteolipids , Tubulin/metabolism , Cytoskeletal Proteins/metabolism
15.
Proc Natl Acad Sci U S A ; 120(14): e2209917120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36989299

ABSTRACT

While most therapeutic research on G-protein-coupled receptors (GPCRs) focuses on receptor activation by (endogenous) agonists, significant therapeutic potential exists through agonist-independent intrinsic constitutive activity that can occur in various physiological and pathophysiological settings. For example, inhibiting the constitutive activity of 5-HT6R-a receptor that is found almost exclusively in the brain and mediates excitatory neurotransmission-has demonstrated a therapeutic effect on cognitive/memory impairment associated with several neuropsychiatric disorders. However, the structural basis of such constitutive activity remains unclear. Here, we present a cryo-EM structure of serotonin-bound human 5-HT6R-Gs heterotrimer at 3.0-Å resolution. Detailed analyses of the structure complemented by comprehensive interrogation of signaling illuminate key structural determinants essential for constitutive 5-HT6R activity. Additional structure-guided mutagenesis leads to a nanobody mimic Gαs for 5-HT6R that can reduce its constitutive activity. Given the importance of 5-HT6R for a large number of neuropsychiatric disorders, insights derived from these studies will accelerate the design of more effective medications, and shed light on the molecular basis of constitutive activity.


Subject(s)
Receptors, Serotonin , Serotonin , Humans , Receptors, Serotonin/metabolism , Brain/metabolism , Signal Transduction
16.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614198

ABSTRACT

Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.


Subject(s)
Brassica rapa , Brassica rapa/metabolism , Nitrates/metabolism , Gene Expression Profiling , Nitrate Transporters , Pollen/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
17.
Sci Total Environ ; 859(Pt 2): 160304, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36427721

ABSTRACT

The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.


Subject(s)
Bacteriophages , Animals , Swine , Bacteriophages/genetics , Metagenomics , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria , Genes, Bacterial
18.
Front Microbiol ; 14: 1329609, 2023.
Article in English | MEDLINE | ID: mdl-38260894

ABSTRACT

Introduction: Klebsiella pneumoniae (K. pneumoniae) is an important opportunistic and zoonotic pathogen which is associated with many diseases in humans and animals. However, the pathogenicity of K. pneumoniae has been neglected and the prevalence of K. pneumoniae is poorly studied due to the lack of rapid and sensitive diagnosis techniques. Methods: In this study, we infected mice and pigs with K. pneumoniae strain from a human patient. An indirect ELISA was established using the KHE protein as the coating protein for the detection of K. pneumoniae specific antibody in clinical samples. A nested PCR method to detect nuclei acids of K. pneumoniae was also developed. Results: We showed that infection with K. pneumoniae strain from a human patient led to mild lung injury of pigs. For the ELISA, the optimal coating concentration of KHE protein was 10 µg/mL. The optimal dilutions of serum samples and secondary antibody were 1:100 and 1:2500, respectively. The analytical sensitivity was 1:800, with no cross-reaction between the coated antigen and porcine serum positive for antibodies against other bacteria. The intra-assay and inter-assay reproducibility coefficients of variation are less than 10%. Detection of 920 clinical porcine serum samples revealed a high K. pneumoniae infection rate by established indirect ELISA (27.28%) and nested PCR (19.13%). Moreover, correlation analysis demonstrated infection rate is positively correlated with gross population, Gross Domestic Product (GDP), and domestic tourists. Discussion: In conclusion, K. pneumoniae is highly prevalent among pigs in China. Our study highlights the role of K. pneumoniae in pig health, which provides a reference for the prevention and control of diseases associated with K. pneumoniae.

19.
Front Microbiol ; 13: 1039297, 2022.
Article in English | MEDLINE | ID: mdl-36425031

ABSTRACT

Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.

20.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941558

ABSTRACT

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Subject(s)
Arginine , Breast Neoplasms , Leucyl Aminopeptidase/metabolism , Animals , Arginine/metabolism , Argininosuccinate Synthase/metabolism , Breast/metabolism , Breast Neoplasms/metabolism , Cattle , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Female , Humans , Interferon-gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...