Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Bioorg Chem ; 147: 107364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636434

ABSTRACT

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Subject(s)
Bone Resorption , Osteogenesis , Ovariectomy , PPAR delta , Signal Transduction , Animals , Mice , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/metabolism , Rats , PPAR delta/metabolism , Female , Osteogenesis/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Molecular Structure , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Dose-Response Relationship, Drug , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Rats, Sprague-Dawley , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects
2.
Adv Healthc Mater ; : e2304223, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407490

ABSTRACT

Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.

3.
Biomed Pharmacother ; 172: 116220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308968

ABSTRACT

OBJECTIVE: Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS: We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved ß-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS: Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Dyslipidemias , Hyperglycemia , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , PPAR gamma/metabolism , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Dyslipidemias/drug therapy , Liver/metabolism , Hyperglycemia/drug therapy , Cholesterol/metabolism , Adipose Tissue, White/metabolism
4.
Front Cardiovasc Med ; 10: 1291450, 2023.
Article in English | MEDLINE | ID: mdl-38124893

ABSTRACT

Background/aims: To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods: A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results: The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion: SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration: https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).

5.
ACS Appl Bio Mater ; 6(10): 4413-4420, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37772974

ABSTRACT

Optical imaging holds great promise for monitoring bacterial infectious processes and drug resistance with high temporal-spatial resolution. Currently, the diagnosis of deep-seated bacterial infections in vivo with fluorescence imaging, including near-infrared (NIR) fluorescence imaging technology, remains a significant challenge due to its limited tissue penetration depth. In this study, we developed a highly specific targeting probe, Cy7-Neo-NO2, by conjugating a bacterial 16S rRNA-targeted moiety, neomycin, with a bacterial nitroreductase (NTR)-activated NIR photoacoustic (PA) scaffold using our previously developed caged photoinduced electron transfer (a-PeT) approach. This conjugation effectively resolved probe aggregation issues in physiological conditions and substantially enhanced its reactivity toward bacterial NTR. Notably, Cy7-Neo-NO2 enabled the first in situ photoacoustic imaging of pneumonia induced by methicillin-resistant Staphylococcus aureus (MRSA), as well as the detection of bacteria within tumors. Furthermore, upon NIR irradiation, Cy7-Neo-NO2 successfully inhibited MRSA growth through a synergistic effect combining photothermal therapy and photodynamic therapy. Our results provided an effective tool for obtaining exceptional PA agents for accurate diagnosis, therapeutic evaluation of deep-seated bacterial infections in vivo, and intratumoral bacteria-specific recognition.

6.
Front Cardiovasc Med ; 10: 1265331, 2023.
Article in English | MEDLINE | ID: mdl-37731522

ABSTRACT

Background: The management of atrial fibrillation (AF) with oral anticoagulants (OAC) is generally recommended to reduce the risk of stroke. However, the decision to prescribe these medications for patients with AF and dementia remains controversial. Methods: A systematic review and meta-analysis of retrospective cohort studies were conducted. The search encompassed PubMed, Cochrane Library, Web of Science, and Embase databases from inception until May 1st, 2023, with language limited to English. Eligible studies included comparisons between exposure to OAC vs. non-OAC in the AF population with dementia or cognitive impairment. Studies that compared the effects of direct oral anticoagulants (DOAC) and vitamin-K antagonists were also included. The primary outcome was all-cause mortality, and the secondary outcomes were ischemic stroke and major bleeding. This study was registered with PROSPERO (No. CRD42023420678). Results: A total of five studies (N = 21,962 patients) met the eligibility criteria and were included in this review. The follow-up duration ranged from 1 to 4 years. Meta-analysis demonstrated that OAC treatment was associated with a lower risk of all-cause mortality in AF patients with dementia with a hazard ratio (HR) of 0.79 and a 95% confidence interval (CI) ranging from 0.68 to 0.92, compared to non-OAC treatment. No statistical differences were observed in the risk of major bleeding (HR = 1.12, 95% CI: 0.88-1.42) or ischemic stroke (HR = 0.77, 95% CI: 0.58-1.00). Three studies reported comparisons between DOAC and warfarin; however, pooled analysis was not performed due to heterogeneity. Conclusion: The use of OACs in individuals diagnosed with both AF and dementia holds the potential to reduce all-cause mortality rates, thereby improving the overall clinical prognosis within this specific population. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023420678, PROSPERO identifier, CRD42023420678.

7.
Talanta ; 260: 124576, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37148689

ABSTRACT

Reliable diagnostic approaches especially those targeting critical Gram-negative bacteria are urgently needed for the prevention of antimicrobial resistance. Polymyxin B (PMB) which specifically targets the outer membrane of Gram-negative bacteria is the last-line antibiotic against life-threatening multidrug-resistant Gram-negative bacteria. However, increasing number of studies have reported the spread of PMB-resistant strains. With the aim to specifically detect Gram-negative bacteria and potentially reduce the irrational use of antibiotics, we herein rationally designed two Gram-negative bacteria specific fluorescent probes based on our previous activity-toxicity optimization of PMB. The in vitro probe PMS-Dns showed fast and selective labeling of Gram-negative pathogens in complex biological cultures. Subsequently, we constructed the caged in vivo fluorescent probe PMS-Cy-NO2 by conjugating bacterial nitroreductase (NTR)-activatable positive charged hydrophobic near-infrared (NIR) fluorophore with polymyxin scaffold. Significantly, PMS-Cy-NO2 exhibited excellent Gram-negative bacterial detection capability with the differentiation between Gram-positive and Gram-negative in a mouse skin infection model.


Subject(s)
Anti-Bacterial Agents , Polymyxins , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymyxins/pharmacology , Fluorescent Dyes/pharmacology , Nitrogen Dioxide , Drug Resistance, Bacterial , Polymyxin B/pharmacology , Polymyxin B/chemistry , Gram-Negative Bacteria , Microbial Sensitivity Tests
8.
Anal Chem ; 95(19): 7715-7722, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37125992

ABSTRACT

The research of delayed fluorescence (DF) has been a hot topic in biological imaging. However, the development of analyte-triggered small molecule DF probes remains a considerable challenge. Herein a novel excited-state intramolecular proton transfer-delayed fluorescence (ESIPT-DF) approach to construct analyte-stimulated DF probes was reported. These new classes of ESIPT-DF luminophores were strategically designed and synthesized by incorporating 2-(2'-hydroxyphenyl)benzothiazole (HBT), a known ESIPT-based fluorophore, as acceptor with a series of classic donor moieties, which formed a correspondingly twisted donor-acceptor pair within each molecule. Thereinto, HBT-PXZ and HBT-PTZ exhibited significant ESIPT and DF characters with lifetimes of 5.37 and 3.65 µs in the solid state, respectively. Furthermore, a caged probe HBT-PXZ-Ga was developed by introducing a hydrophilic d-galactose group as the recognition unit specific for ß-galactosidase (ß-gal) and ESIPT-DF blocking agent and applied to investigate the influence of metal ions on ß-gal activity on the surface of Streptococcus pneumoniae as a convenient tool. This ESIPT-DF "turn-on" approach is easily adaptable for the measurement of many different analytes using only a predictable modification on the caged group without modification of the core structure.


Subject(s)
Fluorescent Dyes , Protons , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Optical Imaging
9.
J Cardiovasc Transl Res ; 16(1): 97-111, 2023 02.
Article in English | MEDLINE | ID: mdl-35655108

ABSTRACT

The aim of this study was to investigate the effect of exercise on extracellular vesicles (EVs) in patients with metabolic dysfunction. The literatures were searched until Apr 28, 2022, and 16 studies that met inclusion criteria were included in this review. The results showed that the concentrations of platelet-derived extracellular vesicles (PEVs) and endothelial cell-derived extracellular vesicles (EEVs) decreased after long-term exercise, especially for CD62E+ EEVs and CD105+ EEVs. Simultaneously, exercise improved the concentration of clinical evaluation indicators of metabolic diseases, and the changes in these indicators were positively correlated with the changes of EEVs and PEVs. The concentration of skeletal muscle-derived extracellular vesicles (SkEVs) increased after a single bout of exercise. The aforementioned results indicated that long-term exercise might improve endothelial function and hypercoagulability in patients with metabolic dysfunction. The changes in concentrations of EVs could assist in assessing effect of exercise on patients with metabolic dysfunction.


Subject(s)
Extracellular Vesicles , Metabolic Diseases , Humans , Extracellular Vesicles/metabolism , Blood Platelets/metabolism , Exercise , Endothelial Cells
10.
Front Pharmacol ; 13: 976644, 2022.
Article in English | MEDLINE | ID: mdl-36408271

ABSTRACT

Aims: The study aimed to evaluate the correlation of different microparticle (MP) phenotypes with plaque burden and their diagnostic value and preliminarily explore the role of MPs in atherosclerosis (AS). Methods: Carotid intima-media thickness (CIMT) and maximal plaque area in 23 patients with carotid atherosclerosis (CAS) and 22 healthy subjects were measured by ultrasound. Transmission electron microscopy, nanoparticle tracking analysis and western blot were used to identify MPs. Flow cytometry assay measured absolute number of MPs, and receiver operating characteristic (ROC) analysis was used to assess the relationship between plaque burden and MPs. To study the preliminary mechanism of MPs in AS, MPs were administered to 32 male Kunming mice, which were randomly divided into control, CAS, healthy, and tetrahydrobiopterin (BH4) groups. Hematoxylin-eosin staining, immunohistochemistry staining, and Western blot were adopted to detect relevant indexes 24 h after the injection. Results: The plasma levels of CD45+ leukocyte-derived microparticle (LMP), CD11a+ LMP, CD11a+/CD45+ LMP, and CD31+/CD42b+ platelet-derived microparticle (PMP) in CAS patients were significantly higher than those in healthy subjects, and were positively correlated with the maximal plaque area. Moreover, the levels of CD11a+ LMP, CD11a+/CD45+ LMP were also positively correlated with CIMT. The area under the ROC curve of the four MPs was 0.689, 0.747, 0.741, and 0.701, respectively. Compared with healthy subjects, MPs from CAS patients resulted in a significantly lower expression of endothelial nitric oxide synthase (eNOS) dimer/monomer, and BH4 could improve eNOS uncoupling. Moreover, the level of VCAM-1 in intima in the CAS group was significantly higher than in the other three groups. Conclusion: CD11a+ LMP and CD11a+/CD45+ LMP might be potential biomarkers for CAS prediction. BH4-related eNOS uncoupling occurs in CAS patients, and circulating MPs from them lead to endothelial dysfunction through eNOS uncoupling.

11.
Front Pharmacol ; 13: 973612, 2022.
Article in English | MEDLINE | ID: mdl-36313296

ABSTRACT

Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.

12.
Hum Exp Toxicol ; 41: 9603271221124099, 2022.
Article in English | MEDLINE | ID: mdl-36042578

ABSTRACT

In the present study, we aimed to investigate the role and mechanism of Parkinson's disease protein 7 (Park7) in myocardial infarction (MI). The Park7 expression in the serum and tissues was down-regulated in mice with MI. Recombinant Park7 protein protected against MI-induced injury and reduced oxidative stress in mice model. Conversely, knockout Park7 increased injury of MI and promoted oxidative stress in MI mice model. In embryonic rat cardiac myoblasts H9c2 cells, over-expression of Park7 reduced reactive oxygen species (ROS)-induced oxidative stress, while down-regulation of Park7 increased ROS-induced oxidative stress. Park7 combined nicotinamide adenine dinucleotide phosphate (NADPH) oxidase cytoplasmic subunit p47phox protein had direct effect on inducing NADPH activator. The inhibition of p47phox reduced the effects of Park7 in ROS production of H2O2-treated H9c2 cells. The regulation of NADPH participated in the effects of Park7 on ROS production of in both MI mice model and H2O2-treated H9c2 cells. Our data demonstrated that Park7 protects against oxidative stress in MI model direct through p47phox and NADPH oxidase 4.


Subject(s)
Myocardial Infarction , Parkinson Disease , Protein Deglycase DJ-1 , Animals , Disease Models, Animal , Hydrogen Peroxide , Mice , Myocardial Infarction/prevention & control , NADPH Oxidase 4/metabolism , NADPH Oxidases , Oxidative Stress , Protein Deglycase DJ-1/metabolism , Rats , Reactive Oxygen Species/metabolism
13.
Front Pharmacol ; 13: 854292, 2022.
Article in English | MEDLINE | ID: mdl-35600859

ABSTRACT

Aims: The objective of this study was to assess the efficacy and potential mechanisms of Chinese herbal medicine (CHM) for treating coronary heart disease (CHD) patients with anxiety or depression. Methods: A systematic literature search was performed. Screening studies, extracting data, and assessing article quality were carried out independently by two researchers. The active ingredients of CHM for the treatment of CHD with anxiety or depression were analyzed by the network pharmacology, and the main potential mechanisms were summarized by the database of Web of Science. Results: A total of 32 studies were included. The results showed that compared with the blank control groups, CHM was more beneficial in treating anxiety or depression in patients with CHD [anxiety: OR = 3.22, 95% CI (1.94, 5.35), p < 0.00001, I2 = 0%; depression: OR = 3.27, 95% CI (1.67, 6.40), p = 0.0005, I2 = 0%], and the efficacy of CHM was not inferior to that of Western medicine (WM) [anxiety: OR = 1.58, 95%CI (0.39, 6.35), p = 0.52, I2 = 67%; depression: OR = 1.97, 95%CI (0.73, 5.28), p = 0.18, I2 = 33%,]. Additionally, CHM also showed a significant advantage in improving angina stability (AS) in CHD patients with anxiety or depression compared with blank groups [anxiety: SMD = 0.55, 95%CI (0.32, 0.79), p < 0.00001, I2 = 0%; depression: p = 0.004] and WM groups [anxiety: SMD = 1.14, 95%CI (0.80, 1.47), p < 0.00001, I2 = 0%; depression: SMD = 12.15, 95%CI (6.07, 18.23), p < 0.0001, I2 = 0%]. Angina frequency (AF) and electrocardiogram (ECG) analysis after using CHM demonstrated similar trends. Based on the network pharmacology, quercetin, kaempferol, luteolin, beta-sitosterol, puerarin, stigmasterol, isorhamnetin, baicalein, tanshinone IIa, and nobiletin were most closely and simultaneously related to the pathological targets of CHD, anxiety, and depression. The main underlying mechanisms might involve anti-damage/apoptosis, anti-inflammation, antioxidative stress, and maintaining neurotransmitter homeostasis. Conclusion: CHM exhibited an obvious efficacy in treating CHD patients with anxiety or depression, especially for improving the symptom of angina pectoris. The most active compounds of CHM could simultaneously act on the pathological targets of CHD, anxiety, and depression. Multiple effective components and multiple targets were the advantages of CHM compared with WM.

14.
Front Pharmacol ; 13: 857331, 2022.
Article in English | MEDLINE | ID: mdl-35620296

ABSTRACT

Atherosclerosis (AS)-related diseases are still the main cause of death in clinical patients. The phenotype switching, proliferation, migration, and secretion of vascular smooth muscle cells (VSMCs) have a pivotal role in atherosclerosis. Although numerous research studies have elucidated the role of VSMCs in AS, their potential functional regulations continue to be explored. The formation of AS involves various cells, such as endothelial cells, smooth muscle cells, and macrophages. Therefore, intercellular communication of blood vessels cannot be ignored due to closely connected endothelia, media, and adventitia. Extracellular vesicles (EVs), as the vectors of cell-to-cell communication, can deliver proteins and nucleic acids of parent cells to the recipient cells. EVs have emerged as being central in intercellular communication and play a vital role in the pathophysiologic mechanisms of AS. This review summarizes the effects of extracellular vesicles (EVs) derived from multiple cells (endothelial cells, macrophages, mesenchymal stem cells, etc.) on VSMCs in AS. The key findings of this review are as follows: 1) endothelial cell-derived EVs (EEVs) have anti- or pro-atherogenic effects on VSMCs; 2) macrophage-derived EVs (MEVs) aggravate the proliferation and migration of VSMCs; 3) mesenchymal stem cells can inhibit VSMCs; and 4) the proliferation and migration of VSMCs can be inhibited by the treatment of EVs with atherosclerosis-protective factors and promoted by noxious stimulants. These results suggested that EVs have the same functional properties as treated parent cells, which might provide vital guidance for treating AS.

15.
Talanta ; 246: 123493, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35489098

ABSTRACT

pH homeostasis is essential for alkaliphiles, given their widespread use in biotechnological applications. However, quantitative monitoring of alkaline pH in alkaliphiles remains challenging. Here, we synthesized for the first time, a thermally activated delayed fluorescent (TADF) pH probe: NI-D-OH. Our probe exhibits a good linear relationship between fluorescence intensity and pH in the neutral to alkaline range (pH 7.0-8.6), as well as long-lived TADF emission. We further show that NI-D-OH can be used to monitor intracellular pH in living organisms, and evaluate the effect of Na+ on the pH homeostasis, demonstrating the potential for alkaline pH monitoring and time-resolved fluorescence imaging.


Subject(s)
Biotechnology , Fluorescent Dyes , Fluorescence , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration
16.
Article in English | MEDLINE | ID: mdl-35186096

ABSTRACT

BACKGROUND: Xue-Fu-Zhu-Yu decoction (XFZYD) is a traditional Chinese prescription that has been used to treat patients with blood stasis in China for many years. The present study aimed to evaluate the improvement of cardiac and endothelial functions of XFZYD for patients with acute coronary syndrome (ACS) through a systematic review and meta-analysis. METHODS: Six databases were searched to collect RCTs related to the treatment of XFZYD for ACS. The primary outcomes were cardiac and endothelial functions, including the levels of left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-systolic diameter (LVESD) in echocardiography, as well as the changes in the levels of nitric oxide (NO), endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in the serum. The secondary outcomes were the blood levels of oxidative damage markers (including superoxide dismutase (SOD) and malondialdehyde (MDA)), C-reactive protein (CRP), brain natriuretic peptide (BNP), creatine kinase-MB (CK-MB), and cardiac troponin I (cTnI) as well as the incidence of adverse drug reactions (ADRs). Weighted mean difference (WMD) was estimated for all the outcomes with the random effects model. This type of analysis was conducted in the subgroups of the ACS subtypes, and the methodological quality was assessed using the handbook of Cochrane Collaboration. RESULTS: A total of 1,658 records were identified, and 16 randomized controlled trials (1,171 patients) were included. The primary outcomes suggested that XFZYD combined with routine treatment improved LVEF, reduced LVEDD and LVESD, and also improved the serum levels of NO, and reduced the levels of ET-1 and ICAM-1. XFZYD combination therapy significantly ameliorated the blood levels of SOD, MDA, BNP, CK-MB, and cTnI. However, the results indicated no significant difference between XFZYD plus routine treatment and routine treatment for the levels of VCAM-1 and CRP. Moreover, all the ADRs reported in the included studies were slight and the patients recovered soon. CONCLUSIONS: The present study suggested that XFZYD may improve the cardiac and endothelial functions of ACS patients without serious ADRs. However, based on the mediocre methodological quality, the aforementioned conclusion should be confirmed in a multicenter, large-scale, and accurately designed clinical trial.

17.
Bioorg Chem ; 116: 105361, 2021 11.
Article in English | MEDLINE | ID: mdl-34562672

ABSTRACT

The OPG/RANKL/RANK pathway is a promising target for the design of therapeutic agents used in the treatment of osteoporosis. E09241 with an N-methylpyridine-chlorofuranformamide structural skeleton was previously identified to decrease bone loss and thus protect against osteoporosis in ovariectomized rats through increasing osteoprotegerin (OPG) expression. In this study, 36 derivatives of E09241 (3a) were prepared. The synthesis, up-regulation of OPG activities, SAR (structure-activity relationship), and cytotoxicity of these compounds are presented. Compounds with good up-regulating OPG activities could inhibit RANKL (the receptor activator of nuclear factor-kappa B ligand)-induced osteoclastogenesis in RAW264.7 cells. Particularly, compounds 3c and 3i1 significantly reduced NFATc1 and MMP-9 protein expression through inhibition of the NF-κB and MAPK pathways in RANKL induced RAW264.7 cells. In addition, compounds 3c and 3v significantly promoted osteoblast differentiation in MC3T3-E1 cells in osteogenic medium, and compounds 3c, 3v, and 3i1 obviously increased OPG protein expression and secretion in MC3T3-E1 cells. Furthermore, the pharmacokinetic profiles, acute toxicity, and hERG K+ channel effects of compounds 3a, 3c, 3e, 3v, and 3i1 were investigated. Taken together, these results indicate that N-methylpyridine-chlorofuranformamide analog 3i1 could serve as a promising lead for the development of new agents for treating osteoporosis.


Subject(s)
Formamides/pharmacology , Furans/pharmacology , Osteoprotegerin/metabolism , Pyridines/pharmacology , RANK Ligand/antagonists & inhibitors , 3T3 Cells , Animals , Dose-Response Relationship, Drug , Formamides/chemistry , Furans/chemistry , Mice , Molecular Structure , Osteogenesis/drug effects , Pyridines/chemistry , RANK Ligand/metabolism , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Front Genet ; 12: 668324, 2021.
Article in English | MEDLINE | ID: mdl-34220945

ABSTRACT

Background/Aims: This study aimed to compare the clinical value of the peak time point and area under the curve (AUC) of miRNAs and conventional biomarkers in acute myocardial infarction (AMI). Methods: A literature search was carried out in PubMed, Web of Science, Embase, and Cochrane systematically. Screening studies, extracting data, and assessing article quality were performed independently by two researchers. Also, the names of miRNAs in the included studies were standardized by the miRBase database. Results: A total of 40 studies, encompassing 6,960 participants, were included in this systematic review. The samples of circulating miRNAs were mainly from the plasma. The results of this systematic review displayed that miR-1-3p, miR-19b-3p, miR-22-5p, miR-122-5p, miR-124-3p, miR-133a/b, miR-134-5p, miR-150-5p, miR-186-5p, miR-208a, miR-223-3p, miR-483-5p, and miR-499a-5p reached peak time earlier and showed a shorter time window than the conventional biomarkers despite the different collection times of initial blood samples. miR-1-3p, miR-19b-3p, miR-133a/b, miR-208a/b, miR-223-3p, miR-483-5p, and miR-499a-5p were shown to be more valuable than classical biomarkers for the early diagnosis of AMI, and these miRNAs appeared to have the most potential biomarkers within 4 h of the onset of symptoms except miR-133a/b and miR-208b. Moreover, combined miRNAs or miRNAs combined with classical biomarkers could compensate for the deficiency of single miRNA and conventional biomarker in sensitivity or specificity for an optimal clinical value. Conclusions: miR-1-3p, miR-19b-3p, miR-208a, miR-223-3p, miR-483-5p, and miR-499a-5p are promising biomarkers for AMI due to their satisfactory diagnostic accuracy and short time window (within 4 h of the onset of symptoms).

19.
Talanta ; 233: 122610, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215094

ABSTRACT

Recently, antibiotic resistant has become a serious public health concern, which warrants new generations of antibiotics to be developed. Pharmacodynamic evaluation is crucial in drug discovery processes. Despite numerous advanced imaging systems are available nowadays, technologies for the sensitive in vivo diagnosis of bacterial infections and direct visualization of drug efficacy are yet to be developed. In this study, we have developed novel near-infrared (NIR) fluorogenic probes. These probes are dark in solution but highly fluorescent when bound to the cognate reporter, fluorogen-activating protein (FAP). We established the in vivo bacterial infection model using FAP_dH6.2 recombinantly expressed E. coli and applied this NIR fluoromodule-based system for diagnosing bacterial infections and monitoring disease progressions and its responses to a type of antibiotics through classic mechanism of membrane lysis. This NIR fluoromodule-based system will discover new information on bacterial infections and identify newer antibacterial entities.


Subject(s)
Bacterial Infections , Fluorescent Dyes , Anti-Bacterial Agents/pharmacology , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Escherichia coli/genetics , Humans , Proteins
20.
J Cardiovasc Transl Res ; 14(5): 841-856, 2021 10.
Article in English | MEDLINE | ID: mdl-33495962

ABSTRACT

This study aimed to explore the relationship between exercise and circulating microparticles (CMPs). PubMed, Web of Science, Embase, and the Cochrane Library databases were searched until August 13, 2020, using the terms "exercise" and "cell-derived microparticles." The Cochrane tool of risk of bias and the Methodological Index for Non-Randomized Studies were used to grade the studies. Twenty-six studies that met criteria were included in this review, including one before-after self-control study, 2 cohort studies, 4 randomized control trials, 5 case-control studies, and 14 descriptive studies. The studies were divided into a single bout and long-term exercise. The types of MPs contained endothelium-derived microparticles (EMPs), leukocyte-derived microparticles (LMPs), platelet-derived microparticles (PMPs), and erythrocyte-derived microparticles (ErMPs). This first systematic review found that the levels of CMPs continued to increase after a single bout of exercise in untrained subjects and were lower in trained subjects. PMPs expressed a transient increase after a single bout of exercise, and the proportion and duration of PMPs increment reduced in long-term exercise. Most studies showed a decline in LMPs in trained subjects after a single bout and long-term exercise, and variable changes were found in EMPs and ErMPs after exercise. A single bout of exercise drives the vessels exposed to high shear stress that promotes the formation of CMPs. However, the decline in CMPs in trained subjects may be attributed to the fact that they have a better ability to adapt to changes in hemodynamics and cellular function during exercise.


Subject(s)
Cell-Derived Microparticles , Blood Platelets , Case-Control Studies , Exercise , Healthy Volunteers , Humans , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...