Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1353-1360, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621983

ABSTRACT

This study aims to investigate the effect of Xixin Decoction on the T helper 17 cell(Th17)/regulatory T cell(Treg) ba-lance of intestinal mucosa and the expression of related transcription factors in the senescence-accelerated mouse-prone 8(SAMP8) model. Fifty 14-week male mice of SAMP8 were randomized by the random number table method into model group, probiotics group, and high-, medium-, and low-dose Xixin Decoction groups, with 10 mice in each group. Ten 14-week male mice of senescence-acce-lerated mouse-resistant 1(SAMR1) served as control group. After 10 weeks of feeding, the mice were administrated with correspon-ding drugs for 10 weeks. Morris water maze test was carried out to examine the learning and memory abilities of mice. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of secretory immunoglobulin A(SIgA) in the intestinal mucosa, and flow cytometry to detect the percentage content of Th17 and Treg in the intestinal mucosa. Western blot was performed to determine the protein levels of retinoid-related orphan receptor gamma t(RORγt) and forkhead box p3(Foxp3) in the mouse colon tissue. Compared with control group, the escape latency of mice in model group was significantly prolonged(P<0.01), and the number of times of crossing the platform and the residence time in the target quadrant were significantly reduced within 60 s(P<0.01), intestinal mucosal SIgA content was significantly decreased(P<0.01), Th17 content was increased(P<0.05), Treg content was decreased(P<0.01), the expression of RORγt protein was increased and Foxp3 protein was decreased in colon(P<0.01). Compared with the model group, high-dose Xixin Decoction group improved the learning and memory ability(P<0.05 or P<0.01). Probiotics group and high-and medium-dose Xixin Decoction group increased the content of SIgA in intestinal mucosa(P<0.05 or P<0.01), decreased percentage content of Th17 and increased the percentage content of Treg in intestinal mucosa(P<0.05 or P<0.01). Furthermore, they down-regulated the protein level of RORγt and up-regulated the protein level of Foxp3 in the intestinal mucosa(P<0.01). In conclusion, Xixin Decoction may act on intestinal mucosal immune barrier, affect gut-brain information exchange, and improve the learning and memory ability of SAMP8 by promoting SIgA secretion and regulating the Th17/Treg balance and the expression of RORγt and Foxp3.


Subject(s)
T-Lymphocytes, Regulatory , Th17 Cells , Mice , Male , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immunoglobulin A, Secretory/pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5032-5040, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802845

ABSTRACT

This study aimed to explore the possible effect of Xixin Decoction(XXD) on the learning and memory ability of Alzheimer's disease(AD) model senescence-accelerated mouse-prone 8(SAMP8) and the related mechanism in enhancing neuroprotective effect and reducing neuroinflammation. Forty SAMP8 were randomly divided into a model group(10 mL·kg~(-1)·d~(-1)), a probiotics group(0.39 g·kg~(-1)·d~(-1)), a high-dose group of XXD granules(H-XXD, 5.07 g·kg~(-1)·d~(-1)), a medium-dose group of XXD granules(M-XXD, 2.535 g·kg~(-1)·d~(-1)), and a low-dose group of XXD granules(L-XXD, 1.267 5 g·kg~(-1)·d~(-1)). Eight senescence-accelerated mouse-resistant 1(SAMR1) of the same age and strain were assigned to the control group(10 mL·kg~(-1)·d~(-1)). After ten weeks of intragastric administration, the Morris water maze was used to test the changes in spatial learning and memory ability of mice after treatment. Meanwhile, immunofluorescence staining was used to detect the positive expression of receptor for advanced glycation end products(AGER), Toll-like receptor 1(TLR1), and Toll-like receptor 2(TLR2) in the hippocampal CA1 region of mice. Western blot was employed to test the protein expression levels of silencing information regulator 2 related enzyme 1(SIRT1), AGER, TLR1, and TLR2 in the hippocampus of mice. Enzyme linked immunosorbent assay(ELISA) was applied to assess the levels of Aß_(1-42) in the hippocampus of mice and the levels of nuclear factor κB p65(NF-κB p65), NOD-like receptor protein 3(NLRP3), tumor necrosis factor-α(TNF-α), and interleukin-1ß(IL-1ß) in the serum and hippocampus of mice. Compared with the model group, XXD significantly improved the spatial learning and memory ability of SAMP8, increased the expression of neuroprotective factors in the hippocampus, decreased the levels of neuroinflammatory factors, and inhibited the expression of Aß_(1-42). In particular, H-XXD significantly increased the expression of SIRT1 in the hippocampus of mice, reduced the expression levels of NF-κB p65, NLRP3, TNF-α, and IL-1ß in the serum and hippocampus of mice, and decreased the expression of AGER, TLR1, and TLR2 in the hippocampus of mice(P<0.05 or P<0.01). XXD may improve the spatial learning and memory ability of AD model SAMP8 by enhancing the neuroprotective effect and inhibiting neuroinflammation.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Sirtuin 1/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 1/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Hippocampus
4.
Anal Chem ; 91(17): 11170-11177, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31368307

ABSTRACT

A protein/lanthanide complex (BSA/Tb3+)-based sensor array in two different pH buffers has been designed for high-throughput recognition and time-resolved fluorescence (TRF) detection of metal ions in biofluids. BSA, which acted as an antenna ligand, can sensitize the fluorescence of Tb3+ (i.e., antenna effect), while the presence of metal ions would lead to the corresponding conformational change of BSA for altering the antenna effect accompanied by a substantial TRF performance of Tb3+. This principle has also been fully proved by both experimental characterizations and coarse-grained molecular dynamics (CG-MD) studies. By using Tris-HCl buffer with different pHs (at 7.4 and 8.5), 17 metal ions have been well-distinguished by using our proposed BSA/Tb3+ sensor array. Moreover, the sensor array has the potential to discriminate different concentrations of the same metal ions and a mixture of metal ions. Remarkably, the detection of metal ions in biofluids can be realized by utilizing the presented sensor array, verifying its practical applications. The platform avoids the synthesis of multiplex sensing receptors, providing a new method for the construction of convenient and feasible lanthanide complex-based TRF sensing arrays.


Subject(s)
Body Fluids/chemistry , High-Throughput Screening Assays , Metals, Heavy/analysis , Serum Albumin, Bovine/chemistry , Animals , Cattle , Fluorescence , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Spectrometry, Fluorescence , Time Factors
5.
Mikrochim Acta ; 186(7): 466, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31236752

ABSTRACT

A method is described for the determination of ascorbic acid (AA) in complex biological fluids. It based on maganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZnGe NPs) with appealing time-resolved phosphorescence (TRP). TRP can provide a background-free reporter signal in analytical methods. The absorption of AA overlaps the excitation band of Mn@ZnGe NPs at 254 nm. This reduces the intensity of fluorescence via an inner filter effect (IFE) with increasing concentration of AA. Typical experimental conditions include an emission peak at 536 nm, a delay time of 50 µs and a counting time of 2 ms. This method can detect AA in a range of 5-500 µM with a 0.13 µM limit of detection. If AA is oxidized by the enzyme AA oxidase (AAOx), dehydroascorbic acid will be formed which doesn't absorb at 254 nm. Hence, the IFE cannot occur and fluorescence is not reduced. The strategy can be used to quantify AAOx in the activity range of 1-4 U·mL-1. By using a handheld UV lamp and a smart phone with a color-scanning feature, the feasibility for visual detection and real-time/onsite quantitative scanometric monitoring of AA and AAOx is demonstrated. Graphical abstract Schematic presentation of a fluorometric method for determination of ascorbic acid (AA) and ascorbic oxidase and a scanometric visual assay. It based on the use of maganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZnGe NPs) with appealing time-resolved phosphorescence (TRP) and the inner-filter effect (IFE) between AA and Mn@ZnGe NPs.


Subject(s)
Ascorbate Oxidase/analysis , Ascorbic Acid/analysis , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Animals , Ascorbic Acid/blood , Ascorbic Acid/urine , Enzyme Assays/instrumentation , Enzyme Assays/methods , Germanium/chemistry , Limit of Detection , Male , Manganese/chemistry , Rats , Smartphone , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Zinc/chemistry
6.
Biosens Bioelectron ; 139: 111335, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31128478

ABSTRACT

The abundant functional groups on guanosine monophosphate (GMP) make it possible to interact with various metal ions. The subtle difference in the structure of GMP and deoxy-guanosine monophosphate (dGMP) coupled with Tb3+ can be readily exploited to form two coordination polymers, which have been unveiled as two time-resolved fluorescence (TRF) sensing reporters (Tb-GMP and Tb-dGMP) in our study. Based on this finding, herein, we have proposed a novel TRF orthogonal sensing array (Tb-GMP/dGMP) for pattern-recognition-based sensing of various metal ions. In addition, upon integration of some thiol-affinity metal ions, Tb-GMP/dGMP can be further extended to construct two metal ion-involved pattern-recognition-based sensor arrays (Tb-GMP/dGMP-Cu, Tb-GMP/dGMP-Ag) for the TRF sensing different levels of disease-relevant biothiols in biofluids, illustrating the powerful and multifunctional capabilities of the Tb-GMP/dGMP system and would inspire simpler and more widespread designs of chemical nose/tongue-based applications.


Subject(s)
Biosensing Techniques , Ions/isolation & purification , Metals/isolation & purification , Pattern Recognition, Automated/methods , Fluorescence , Ions/chemistry , Metals/chemistry , Nucleotides/chemistry , Polymers/chemistry
7.
Biotechnol Appl Biochem ; 66(3): 426-433, 2019 May.
Article in English | MEDLINE | ID: mdl-30806989

ABSTRACT

In this work, we present a novel facile strategy for green synthesis of polyethyleneimine (PEI)-capped carbon dots (PEI-CDs), in which citric acid and PEI were chosen as reactants and highly fluorescent PEI-CDs could be readily obtained via a simple one-pot refluxing under 120 °C within 2 H. Fluorescence studies indicate that the as-prepared PEI-CDs exhibit strong fluorescence emission at 446 nm with excitation at 365 nm. Upon the sequential addition of Cu2+ and H2 S, PEI-CDs result in an interesting "ON-OFF-ON" three-state emission responses, promising a bifunctional sensory platform. Moreover, the Cu2+ /H2 S-facilated reversible fluorescence changes of PEI-CDs have demonstrated the design of an INHIBIT logic system based on Boolean logic.


Subject(s)
Carbon/chemistry , Copper/analysis , Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Logic , Polyethyleneimine/chemistry , Quantum Dots/chemistry , Biological Assay/methods , Optical Imaging , Spectrometry, Fluorescence
8.
Talanta ; 191: 235-240, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30262056

ABSTRACT

Tb3+-doped carbon dots (Tb3+@CDs) were prepared in a facile hydrothermal method by using ammonium citrate as carbon source and Tb3+ as dopant. A 15-bp GT-rich single-strand DNA (ssDNA) was introduced to sensitize Tb3+ via the antenna effect for generating two fluorescence signals (CDs and Tb3+), forming a conjugate of Tb3+@CDs/ssDNA. The ratiometric fluorescence of Tb3+@CDs/ssDNA could be reversibly regulated by Ag+ and Cys, in which the fluorescence peak at 546 nm of Tb3+ could be switched to "On" or "Off" as the signal indicator while the fluorescence peak at 444 nm of CDs remained constant as the build-in reference. The proposed Ag+/Cys-mediated reversible fluorescence changes in Tb3+@CDs/ssDNA was also proven for the design of a self-calibrating ratiometric fluorescence logic system. By integrated with the specific reaction between H2O2 and Cys, Tb3+@CDs/ssDNA was applied for ratiometric fluorescence detection of H2O2. More importantly, the sensing strategy could be further successfully extended to the monitoring of H2O2-produced oxidase-related reactions, such as GOx-biocatalyzed oxidation of glucose (the limit of detection: 0.06 µM) and was well applied in rat serum compared to commercial kits. This work unveiled a novel ratiometric fluorescent design, which is cost-effective, simple to prepare and easy-to-use without chemical modification or fluorescence labeling.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , DNA, Single-Stranded/chemistry , Nanoparticles/chemistry , Oxidoreductases/metabolism , Terbium/chemistry , Animals , Base Sequence , Biocatalysis , Blood Glucose/analysis , Calibration , Cysteine/chemistry , Cystine/chemistry , DNA, Single-Stranded/genetics , Hydrogen Peroxide/chemistry , Male , Models, Molecular , Molecular Conformation , Rats
9.
Cell Physiol Biochem ; 48(5): 2219-2229, 2018.
Article in English | MEDLINE | ID: mdl-30110677

ABSTRACT

BACKGROUND/AIMS: Cisplatin (CDDP) was the first platinum-containing anti-cancer drug. However, CDDP causes nephrotoxicity as a side effect, which limits its clinic application. The aim of this study was to investigate the renoprotective effect of ginsenoside Re (G-Re) in a murine model of CDDP-induced acute kidney injury. METHODS: Male ICR mice were divided into 4 groups. G-Re was administered to the mice by oral gavage once a day at a dose of 25 mg/kg for 10 days. On the 7th day, a single injection of CDDP (25 mg/kg) was given at 1 h after G-Re treatment. RESULTS: CDDP administration resulted in renal dysfunction, as evidenced by an increase in the serum levels of creatinine and urea nitrogen. Oxidative stress in the CDDP group was reflected by an increase of malondialdehyde and a depletion of reduced glutathione and catalase in renal tissue. These findings were supported by increased 4-hydroxynonenal expression, which was significantly reduced by G-Re. Simultaneously, the overexpression of cytochrome P450 E1 was inhibited. G-Re inhibited the inflammatory response by the reduction of the protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Furthermore, CDDP increased the expression of Bax and decreased Bcl-2 expression in renal tissue. Hematoxylin and eosin, Hoechst 33258, and TUNEL staining also confirmed the presence of acute tubular necrosis and apoptosis. G-Re significantly decreased the levels of indicators of renal dysfunction, inflammatory cytokines, apoptosis, and malondialdehyde in the kidney and also significantly attenuated the histopathological changes associated with acute renal failure. CONCLUSIONS: Collectively, the results of this study suggest that the nephroprotective potential of G-Re may, in part, be related to its anti-oxidant, anti-inflammatory, and anti-apoptotic effects.


Subject(s)
Acute Kidney Injury/prevention & control , Ginsenosides/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Blood Urea Nitrogen , Body Weight/drug effects , Catalase/metabolism , Cisplatin/toxicity , Creatinine/blood , Ginsenosides/pharmacology , Glutathione/metabolism , Immunohistochemistry , Kidney/metabolism , Kidney/pathology , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred ICR , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
10.
Anal Chem ; 90(17): 10614-10620, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30099873

ABSTRACT

Screening functional DNA that can fruitfully interact with metal ions is a long-standing hot topic in the fields of biotechnology, medicine, and DNA-based sensors. In this paper, we focus on the chemistry of europium(III) (Eu) coupled with single-stranded DNA (ssDNA), and we innovatively unveil that cytosine- and thymine-rich ssDNA oligomers (e.g., C16 and T16) can be effective antenna ligands to sensitize the luminescence of Eu. Luminescence lifetime spectroscopy, circular dichroic (CD) spectroscopy, and isothermal titration calorimetry (ITC) have been used to systematically characterize the interaction involved between Eu and ssDNA. In light of the resultant sequence-dependent performances, the long luminescence lifetime Eu/ssDNA-based label-free and versatile probes are further devised as a pattern distinction system for time-resolved luminescent (TRL) sensing applications. The interactions of metal ions and ssDNA can distinctively shift the antenna effect of ssDNA toward Eu as accessible pattern signals. As a result, as few as two Eu/ssDNA label-free TRL probes can discriminate 17 metal ions via principal component analysis (PCA). In addition, thiols can readily capture metal ions to switch the luminescence of Eu/ssDNA probes initially altered by metal ions. Hence, four Eu/ssDNA-metal ion ensembles are demonstrated to be a powerful label-free TRL sensor array for pattern differentiation of eight thiols and even chiral recognition of cysteine enantiomers with different concentrations. Moreover, the sensitive TRL detection of thiols in biofluids can be successfully realized by using our method, promising its potential practical usage. This is the first report of a ssDNA-sensitized Eu-based TRL platform for label-free yet multifunctional background-free sensing and would open a door for sprouting of more novel lanthanide ion/DNA-relevant strategies toward widespread applications.


Subject(s)
DNA/chemistry , Europium/chemistry , DNA Probes/chemistry , DNA, Single-Stranded/chemistry , Luminescence
11.
Anal Chem ; 90(17): 10536-10542, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30099878

ABSTRACT

Dual-mode optical assays are becoming more popular and attractive because they would provide robust detailed information in biochemical analysis. We herein unveil a novel dual-mode optical (i.e., UV-vis absorption and fluorescence) method for multifunctional sensing of phosphate compounds (PCs) (e.g., nucleotides and pyrophosphate) based on pattern recognition, which innovatively employs only one kind of porphyrin/lanthanide-doped upconversion nanoparticles (Ln-UCNPs) hybrid integrated with a facile pH-regulated strategy as the sensor array. An easy-to-obtain porphyrin hydrate (tetraphenylporphyrin tetrasulfonic acid hydrate, TPPS) can assemble onto the ligand-free Ln-UCNPs to construct the organic/inorganic hybrid (TPPS/Ln-UCNPs), leading to a new absorption band to quench the upconversion fluorescence of Ln-UCNPs due to fluorescence resonance energy transfer (FRET). The dual-mode optical performances of TPPS/Ln-UCNPs are characteristically correlated with the pH in aqueous solution. Thus, as a proof-of-concept design, three types of TPPS/Ln-UCNPs (TPPS/Ln-UCNPs4, TPPS/Ln-UCNPs4.5, and TPPS/Ln-UCNPs5) were prepared by using buffers with different pH (at 4, 4.5, and 5) to form our proposed sensor array, which would result in individual dual-mode optical response patterns upon being challenged with PCs for their pattern recognition through a competitive mechanism between TPPS and PCs. The results show that three TPPS/Ln-UCNPs n sensors can successfully permit the sensitive detection of 14 PCs and differentiate them between different concentrations, as well as a mixture of them. The pH-dependent TPPS/Ln-UCNPs promises the simple, yet powerful discrimination of PCs via pattern recognition, would prospectively stimulate and expand the use of organic/inorganic hybrid toward more biosensing applications.


Subject(s)
Biosensing Techniques , Chemistry Techniques, Analytical , Inorganic Chemicals/analysis , Organic Chemicals/analysis , Hydrogen-Ion Concentration , Principal Component Analysis
12.
ACS Appl Mater Interfaces ; 10(37): 31725-31734, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30148952

ABSTRACT

In this work, manganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZGNPs) have been hydrothermally synthesized to equip with appealing time-resolved luminescence (TRL). Interestingly, we reveal that they can be readily quenched ("turn off") via a facile surface coating with bioinspired polydopamine (PDA) polymerized from dopamine (DA), resulting from PDA-triggered TRL resonance energy transfer (TRL-RET). By integrated with the thiol-induced inhibition of PDA formation, an ingenious inorganic-organic hybrid tongue-mimic sensor array is thus unveiled for noninvasive pattern recognition of thiols in biofluids in a TRL-RET-reversed "turn on" format toward healthcare monitoring. The sensing principle is based on the new finding that there are differential inhibitions from thiols against the polymerization of DA with various concentrations. Furthermore, density function theory (DFT) studies excellently prove our sensing principle and experimental results, reinforcing the power of the presented system. More importantly, chiral recognition of varied concentrations and mixtures of cysteine enantiomers using our platform are also been demonstrated, promising its practical usage. This is a novel concept of inorganic-organic hybrid-based pattern and chiral recognition platform for TRL background-free sensing and would sprout more novel relevant strategies toward broader applications.


Subject(s)
Biosensing Techniques/methods , Luminescence , Sulfhydryl Compounds/analysis , Cysteine , Fluorescence Resonance Energy Transfer , Polymerization , Time Factors
13.
Anal Chem ; 90(13): 8248-8253, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29862820

ABSTRACT

There is a close correlation between body health and the level of biofluid-derived metal ions, which makes it an attractive model analyte for noninvasive health monitoring. The present work has developed a novel nose/tongue-mimic chemosensor array based on bioinspired polydopamine/polyethylenimine copolymers (PDA/PEI n) for label-free fluorescent determination of metal ions in biofluids. Three types of PDA/PEI n (PDA/PEI6, PDA/PEI18, and PDA/PEI48) were prepared by using different concentrations of PEI to construct the proposed sensor array, which would lead to unique fluorescence response patterns upon challenged with metal ions for their pattern discrimination. The results show that as few as 3 PDA/PEI n sensors can successfully realize the largescale sensitive detection of metal ions in biofluids. Moreover, we have demonstrated that PDA/PEI n sensors are qualified for lifetime-based pattern discrimination application. Furthermore, the sensors can distinguish between different concentrations of metal ions, as well as a mixture of different metal ions in biofluids, even the mixtures with different valence states. The method promises the simple, rapid, sensitive, and powerful discrimination of metal ions in accessible biofluids, showing the potential applications in the diagnosis of metal ion-involved diseases.


Subject(s)
Biomimetic Materials/chemistry , Clinical Chemistry Tests/instrumentation , Indoles/chemistry , Metals/analysis , Nose , Polyethyleneimine/chemistry , Polymers/chemistry , Tongue , Humans
14.
Inorg Chem ; 57(8): 4379-4386, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29617122

ABSTRACT

A novel palladium N-heterocyclic bis-carbene dicarboxylate ligand (Pd-NHDC-H2L) was successfully synthesized. In addition, an Pd-NHDC-containing UiO-67 type MOF (UiO-67-Pd-NHDC) was prepared on the basis of a size-matched ligand mixture of biphenyl-4,4'-dicarboxylic acid/Pd-NHDC-H2L (9/1) and ZrCl4 under solvothermal conditions. The obtained UiO-67-Pd-NHC MOF can be a highly heterogeneous catalyst to promote Heck cross-coupling and intermolecular benzyne-benzyne-alkene insertion reactions.

15.
Anal Chim Acta ; 1012: 74-81, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29475476

ABSTRACT

A novel type of stimuli-responsive fluorescent polymers has been developed via the self-assembly of riboflavin-5'-phosphate (RiP) as ligand and europium (III) (Eu3+) as central metal ion coordinated with the ligand. The as-prepared RiP/Eu3+ coordination polymers (RiP/Eu3+ CPs) are smart and multifunctional for respectively responding to chemical and physical stimuli, in which RiP acts as the stimuli-responsive fluorescent signal indicator. For sensing chemical stimuli, 2,6-pyridinedicarboxylic acid (DPA, an anthrax biomarker) having higher bonding force towards Eu3+ can grab it from smart RiP/Eu3+ CPs through competition reaction, resulting in the release of RiP for highly sensitive and selective DPA monitoring in a mix-and-read fluorescent enhancement format, and the detection limit is as low as 41.5 nM. Density functional theory (DFT) calculations has been also performed to verify the DPA sensing principle. For sensing physical stimuli, the smart RiP/Eu3+ CPs can be acting as a novel sensory probe for the determination of temperature from 10 °C to 40 °C based on the thermal-induced disruption of the binding between Eu3+ and RiP and the disassembly of the smart RiP/Eu3+ CPs accompanying with the recovery of the fluorescence of RiP. This work establishes an effective platform for multifunctional sensing of chemical and physical stimuli utilizing both smart lanthanide nanoscale coordination polymers (LNCPs) and novel sensing strategies.

16.
Anal Chem ; 90(5): 3443-3451, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29433302

ABSTRACT

Recent years have witnessed the rapid development of pattern-based sensors due to their potential to detect and differentiate a wealth of analytes with only few probes. However, no one has found or used the combination of DNA and terbium(III) (Tb) as a pattern recognition system for large-scale mix-and-measure assays. Here we report for the first time that DNA-sensitized Tb (DNA/Tb), as a label-free and versatile "chemical nose/tongue", can be employed for wide-scale time-gated luminescent (TGL) monitoring of metal ions covering nearly the entire periodic table in a cost-effective fashion. A series of guanine/thymine (G/T)-rich DNA ligands was screened to sensitize the luminescence of Tb (referring to the antenna effect) as smart pattern responders to metal ions in solution, and metal ion-DNA interactions can differentially alter the antenna effect of DNA toward Tb as pattern signals. Our results show that as few as 3 DNA/Tb label-free sensors could successfully discriminate 49 analytes, including alkali-metal ions, alkaline-earth-metal ions, transition/post-transition metal ions, and lanthanide ions. A blind test with 49 metals further confirmed the discriminating power of DNA/Tb sensors. Moreover, the lifetime-based pattern recognition application using DNA/Tb sensors was also demonstrated. This DNA/Tb pattern recognition strategy could be extended to construct a series of "chemical noses/tongues" for monitoring various biochemical species by using different responsive DNA ligands, thus promising a versatile and powerful tool for a sensing application and investigation of DNA-involving molecular interactions.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Luminescent Agents/chemistry , Luminescent Measurements/methods , Metals/analysis , Terbium/chemistry , Environmental Monitoring/methods , Guanine/chemistry , Ligands , Luminescence , Thymine/chemistry , Water Pollutants, Chemical/analysis
17.
J Mater Chem B ; 6(42): 6877-6883, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-32254704

ABSTRACT

Thiols play a crucial role in various biological processes, and the discrimination of thiols in biofluids is a significant but difficult issue. Herein, a facile label-free non-invasive fluorescent sensor array has been presented based on PDA/PEIn-Cu2+ in three different pH buffer solutions for pattern discrimination of thiols and chiral recognition of cysteine (Cys) enantiomers in biofluids toward health monitoring. The proposed sensor array was fabricated based on the fact that Cu2+ has a strong affinity toward thiols, which prevents Cu2+ from binding PDA/PEIn, and the fluorescence properties of PDA/PEIn were recovered to a certain degree. Different thiols exhibited different affinities toward Cu2+, generating distinct fluorescence response patterns. These response patterns are characteristic for each thiol and can be discriminated by principal component analysis (PCA). In this work, three types of PDA/PEI48-Cu2+ sensors (PDA/PEI48-Cu4 2+, PDA/PEI48-Cu4.5 2+ and PDA/PEI48-Cu5 2+) were prepared by using acetate buffer with different pHs (at 4, 4.5, and 5) to form our proposed sensor array, which could realize the pattern discrimination of 8 thiols. Moreover, we successfully realized the sensitivity and selectivity assays to these thiols. Furthermore, the proposed sensor array could discriminate mixtures of thiols as well as the chiral recognition of mixtures of Cys enantiomers, promising its potential practical usage. Significantly, the resultant practical application in real samples showed that it could be a fascinating assay for the development of non-invasive diagnosis. This method promises the facile, sensitive and powerful discrimination of thiols in biofluids and would sprout more relevant strategies toward a broad range of applications.

18.
J Nutr Sci Vitaminol (Tokyo) ; 63(1): 35-43, 2017.
Article in English | MEDLINE | ID: mdl-28367924

ABSTRACT

The aim of this study was to investigate the effects of 5-hydroxymethyl-2-furfural (5-HMF) on liver fibrosis induced by carbon tetrachloride (CCl4) and alcohol. Male ICR mice were treated with CCl4 dissolved in olive oil (10% v/v, 2.5 µg/L) intraperitoneally (i.p.), and given at a dose of 2.5×10-5 mg/kg B.W. twice a week for 7 wk. Concurrently, mice received drinking water with or without alcohol. The mice in treatment groups and positive control group were gavaged with 5-HMF (7.5, 15, and 30 mg/kg B.W.) or Huganpian (350 mg/kg B.W.) daily starting in the fourth week and lasting for 4 wk. The blood samples were analyzed for biochemical markers of hepatic injury and tissue samples were subjected for estimation of liver antioxidants and histopathological studies. The concentrations of HA (hyaluronic acid), LN (laminin), CIV (collagen type IV), and MDA (malondialdehyde), as well as the serum levels of ALT (alanine aminotransferase) and AST (aspartate aminotransferase) were markedly reduced by 5-HMF. On the other hand, enzymatic antioxidants SOD (superoxide dismutase), CAT (catalase) and GSH-Px (glutathione peroxidase) were markedly elevated in liver tissue treated with 5-HMF. Histopathological examination revealed that 5-HMF treatment noticeably prevented hepatocyte apoptosis, fatty degeneration and inflammatory cell infiltration on liver fibrosis induced by CCl4 and alcohol. Hoechst 33258 staining also revealed hepatocyte apoptosis. 5-HMF could exert protective effects against liver injury and reduce liver fibrosis induced by CCl4 and alcohol in mice.


Subject(s)
Carbon Tetrachloride/administration & dosage , Ethanol/administration & dosage , Furaldehyde/analogs & derivatives , Liver Cirrhosis, Experimental/prevention & control , Oxidative Stress/drug effects , Alanine Transaminase/blood , Animals , Antioxidants/analysis , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Catalase/blood , Furaldehyde/administration & dosage , Furaldehyde/therapeutic use , Glutathione Peroxidase/blood , Liver/chemistry , Liver/enzymology , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Male , Malondialdehyde/analysis , Mice , Mice, Inbred ICR , Superoxide Dismutase/blood
19.
Nutrients ; 7(1): 682-96, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25608939

ABSTRACT

The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.


Subject(s)
Alcohol Drinking/adverse effects , Flavoring Agents/pharmacology , Oxidative Stress/drug effects , Phytotherapy , Pyrones/pharmacology , Alanine Transaminase/blood , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Aspartate Aminotransferases/blood , Body Weight/drug effects , Glutathione Peroxidase/blood , Interleukin-1beta/blood , Lipid Peroxidation/drug effects , Male , Malondialdehyde/blood , Mice , Mice, Inbred ICR , Organ Size/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Reactive Oxygen Species/metabolism , Superoxide Dismutase/blood , Triglycerides/blood , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL