Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109733, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38689641

ABSTRACT

Intervertebral disc is a highly rhythmical tissue. As a key factor linking biorhythm and inflammatory response, the shielding effect of NR1D1 in the process of intervertebral disc degeneration remains unclear. Here, we first confirmed that NR1D1 in the nucleus pulposus tissue presents periodic rhythmic changes and decreases in expression with intervertebral disc degeneration. Second, when NR1D1 was activated by SR9009 in vitro, NLRP3 inflammasome assembly and IL-1ß production were inhibited, while ECM synthesis was increased. Finally, the vivo experiments further confirmed that the activation of NR1D1 can delay the process of disc degeneration to a certain extent. Mechanistically, we demonstrate that NR1D1 can bind to IL-1ß and NLRP3 promoters, and that the NR1D1/NLRP3/IL-1ß pathway is involved in this process. Our results demonstrate that the activation of NR1D1 can effectively reduce IL-1ß secretion, alleviate LPS-induced NPMSC pyroptosis, and protect ECM degeneration.

2.
Brain Res ; 1837: 148855, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471644

ABSTRACT

Subarachnoid hemorrhage (SAH) is characterized by the extravasation of blood into the subarachnoid space, in which erythrocyte lysis is the primary contributor to cell death and brain injuries. New evidence has indicated that meningeal lymphatic vessels (mLVs) are essential in guiding fluid and macromolecular waste from cerebrospinal fluid (CSF) into deep cervical lymph nodes (dCLNs). However, the role of mLVs in clearing erythrocytes after SAH has not been completely elucidated. Hence, we conducted a cross-species study. Autologous blood was injected into the subarachnoid space of rabbits and rats to induce SAH. Erythrocytes in the CSF were measured with/without deep cervical lymph vessels (dCLVs) ligation. Additionally, prior to inducing SAH, we administered rats with vascular endothelial growth factor C (VEGF-C), which is essential for meningeal lymphangiogenesis and maintaining integrity and survival of lymphatic vessels. The results showed that the blood clearance rate was significantly lower after dCLVs ligation in both the rat and rabbit models. DCLVs ligation aggravated neuroinflammation, neuronal damage, brain edema, and behavioral impairment after SAH. Conversely, the treatment of VEGF-C enhanced meningeal lymphatic drainage of erythrocytes and improved outcomes in SAH. In summary, our research highlights the indispensable role of the meningeal lymphatic pathway in the clearance of blood and mediating consequences after SAH.

3.
Free Radic Biol Med ; 210: 318-332, 2024 01.
Article in English | MEDLINE | ID: mdl-38052274

ABSTRACT

Iron accumulation is one of the most essential pathological events after subarachnoid hemorrhage (SAH). Ferroportin1 (FPN1) is the only transmembrane protein responsible for exporting iron. Hepcidin, as the major regulator of FPN1, is responsible for its degradation. Our study investigated how the interaction between FPN1 and hepcidin contributes to iron accumulation after SAH. We found that iron accumulation aggravated after SAH, along with decreased FPN1 in neurons and increased hepcidin in astrocytes. After knocking down hepcidin in astrocytes, the neuronal FPN1 significantly elevated, thus attenuating iron accumulation. After SAH, p-Smad1/5 and Smad4 tended to translocate into the nucleus. Moreover, Smad4 combined more fragments of the promoter region of Hamp after OxyHb stimulation. By knocking down Smad1/5 or Smad4 in astrocytes, FPN1 level restored and iron overload attenuated, leading to alleviated neuronal cell death and improved neurological function. However, the protective role disappeared after recombinant hepcidin administration. Therefore, our study suggests that owing to the nuclear translocation of transcription factors p-Smad1/5 and Smad4, astrocyte-derived hepcidin increased significantly after SAH, leading to a decreased level of neuronal FPN1, aggravation of iron accumulation, and worse neurological outcome.


Subject(s)
Hepcidins , Subarachnoid Hemorrhage , Humans , Hepcidins/genetics , Hepcidins/metabolism , Astrocytes/metabolism , Subarachnoid Hemorrhage/pathology , Iron/metabolism , Neurons/metabolism
4.
J Orthop Translat ; 43: 66-84, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38089645

ABSTRACT

Background: The changes in the microenvironment of degenerative intervertebral discs cause oxidative stress injury and excessive apoptosis of intervertebral disc endogenous stem cells. The purpose of this study was to explore the possible mechanism of the protective effect of melatonin on oxidative stress injury in NPMSCs induced by H2O2. Methods: The Cell Counting Kit-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of melatonin. ROS content was detected by 2'7'-dichlorofluorescin diacetate (DCFH-DA). Mitochondrial membrane potential (MMP) was detected by the JC-1assay. Transferase mediated d-UTP Nick end labeling (TUNEL) and Annexin V/PI double staining were used to determine the apoptosis rate. Additionally, apoptosis-associated proteins and PI3K/Akt signaling pathway-related proteins were evaluated by immunofluorescence, immunoblotting and PCR. ECMs were evaluated by RT‒PCR and immunofluorescence. In vivo, X-ray, Magnetic resonance imaging (MRI) and Histological analyses were used to evaluate the protective effect of melatonin. Results: Melatonin had an obvious protective effect on NPMSCs treated with 0-10 µM melatonin for 24 h. In addition, melatonin also had obvious protective effects on mitochondrial dysfunction, decreased membrane potential and cell senescence induced by H2O2. More importantly, melatonin could significantly reduce the apoptosis of nucleus pulposus mesenchymal stem cells induced by H2O2 by regulating the expression of apoptosis-related proteins and decreasing the rate of apoptosis. After treatment with melatonin, the PI3K/Akt pathway was significantly activated in nucleus pulposus mesenchymal stem cells, while the protective effect was significantly weakened after PI3K-IN-1 treatment. In vivo, the results of X-ray, MRI and histological analyses showed that therapy with melatonin could partially reduce the degree of intervertebral disc degeneration. Conclusion: Our research demonstrated that melatonin can effectively alleviate the excessive apoptosis and mitochondrial dysfunction of nucleus pulposus mesenchymal stem cells induced by oxidative stress via the PI3K/Akt pathway, which provides a novel idea for the therapy of intervertebral disc degeneration. The translational potential of this article: This study indicates that melatonin can effectively alleviate the excessive apoptosis and mitochondrial dysfunction of NPMSCs through activating the PI3K/Akt pathway. Melatonin might serve as a promising candidate for the prevention and treatment of Intervertebral disc degeneration disease (IVDD) in the future.

5.
Front Mol Neurosci ; 16: 1121944, 2023.
Article in English | MEDLINE | ID: mdl-37063365

ABSTRACT

Introduction: Endothelial nitric oxide synthase (eNOS) uncoupling plays a significant role in acute vasoconstriction during early brain injury (EBI) after subarachnoid hemorrhage (SAH). Astrocytes in the neurovascular unit extend their foot processes around endothelia. In our study, we tested the hypothesis that increased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression in astrocytes after SAH leads to eNOS uncoupling. Methods: We utilized laser speckle contrast imaging for monitoring cortical blood flow changes in mice, nitric oxide (NO) kits to measure the level of NO, and a co-culture system to study the effect of astrocytes on endothelial cells. Moreover, the protein levels were assessed by Western blot and immunofluorescence staining. We used CCK-8 to measure the viability of astrocytes and endothelial cells, and we used the H2O2 kit to measure the H2O2 released from astrocytes. We used GSK2795039 as an inhibitor of NOX2, whereas lentivirus and adeno-associated virus were used for dihydrofolate reductase (DHFR) knockdown in vivo and in vitro. Results: The expression of NOX2 and the release of H2O2 in astrocytes are increased, which was accompanied by a decrease in endothelial DHFR 12 h after SAH. Moreover, the eNOS monomer/dimer ratio increased, leading to a decrease in NO and acute cerebral ischemia. All of the above were significantly alleviated after the administration of GSK2795039. However, after knocking down DHFR both in vivo and in vitro, the protective effect of GSK2795039 was greatly reversed. Discussion: The increased level of NOX2 in astrocytes contributes to decreased DHFR in endothelial cells, thus aggravating eNOS uncoupling, which is an essential mechanism underlying acute vasoconstriction after SAH.

6.
Brain Res ; 1808: 148324, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36921750

ABSTRACT

BACKGROUND: Ketones are not only utilized to produce energy but also play a neuroprotective role in many neurodegenerative diseases. However, whether this process has an impact on secondary brain damage after traumatic brain injury (TBI) remains unknown. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme in the intra-neuronal utilization of ketones. In this study, we investigated whether reduced expression of OXCT1 after TBI could impact neuroprotective mechanisms and exacerbate neurological dysfunction. MATERIALS AND METHODS: Experimental TBI was induced by a modified version of the weight drop model, it is a model of severe head trauma. Expression of OXCT1 in the injured hippocampus of mice was measured at different time points using immunoblotting assays. The release of abnormal mitochondrial cytochrome c from neurons of the mouse injured lateral hippocampus was measured 1 week after TBI using immunoblotting assays. Neuronal death was assessed by Nissl staining and the level of reactive oxygen species (ROS) within the neurons of the injured lateral hippocampus was assessed by Dihydroethidium staining. RESULTS: OXCT1 was overexpressed in hippocampal neurons by injection of adeno-associated virus into the lateral ventricle. OXCT1 expression levels decreased significantly 1 week post-TBI. After comparing the data obtained from different groups of mice, OXCT1 was found to significantly increase the expression of SIRT3 and reduce the proportion of acetylated SOD2, thus decreasing the production of ROS in the injured hippocampal neurons, reducing neuronal death, and improving cognitive function. CONCLUSIONS: OXCT1 has a critical previously unappreciated protective role in neurological impairment following TBI via the SIR3-SOD2 pathway. These findings highlight the potential of OXCT1 as a simple treatment for patients with TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Neuroprotective Agents , Sirtuin 3 , Animals , Mice , Brain Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Ketones , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism
7.
Front Neurosci ; 16: 1041548, 2022.
Article in English | MEDLINE | ID: mdl-36507324

ABSTRACT

Background: Systemic responses, especially inflammatory responses, after aneurysmal subarachnoid hemorrhage (SAH) are closely related to clinical outcomes. Our study aimed to explore the correlation between the systemic responses in the acute stage and the mid-term outcomes of severe SAH patients (Hunt-Hess grade III-V). Materials and methods: Severe SAH patients admitted to Jinling Hospital from January 2015 to December 2019 were retrospectively analyzed in the study. The univariate and multivariate logistic regression analyses were used to explore the risk factors of 6-month clinical outcomes in severe SAH patients. A predictive model was established based on those risk factors and was visualized by a nomogram. Then, the predictive nomogram model was validated in another severe SAH patient cohort from January 2020 to January 2022. Results: A total of 194 patients were enrolled in this study. 123 (63.4%, 123 of 194) patients achieved good clinical outcomes at the 6-month follow-up. Univariate and multivariate logistic regression analysis revealed that age, Hunt-Hess grade, neutrophil-to-lymphocyte ratio (NLR), and complications not related to operations were independent risk factors for unfavorable outcomes at 6-month follow-up. The areas under the curve (AUC) analysis showed that the predictive model based on the above four variables was significantly better than the Hunt-Hess grade (0.812 vs. 0.685, P = 0.013). In the validation cohort with 44 severe SAH patients from three different clinical centers, the AUC of the prognostic nomogram model was 0.893. Conclusion: The predictive nomogram model could be a reliable predictive tool for the outcome of severe SAH patients. Systemic inflammatory responses after SAH and complications not related to operations, especially hydrocephalus, delayed cerebral ischemia, and pneumonia, might be the important risk factors that lead to poor outcomes in severe SAH patients.

8.
Free Radic Biol Med ; 193(Pt 2): 499-510, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36336227

ABSTRACT

Endothelial malfunction is a major contributor to early or delayed vasospasm after subarachnoid hemorrhage (SAH). As a representative form of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) uncoupling leads to a reduction in nitric oxide (NO) generated by endothelial cells. In this study, we investigated how the interaction between endothelial NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4) and DHFR (dihydrofolate reductase) contributes to eNOS uncoupling after SAH. Setanaxib and the adeno-associated virus (AAV) targeting brain vascular endothelia were injected through the tail vein and the expression and localization of proteins were examined by western blot and immunofluorescence staining. The NO content was measured using the NO assay kit, and laser speckle contrast imaging was used to assess cortical perfusion. ROS (reactive oxygen species) level was detected by DHE (dihydroethidium) staining, DCFH-DA (2',7'-dichlorofluorescin diacetate) staining and H2O2 (hydrogen peroxide) measurement. The Garcia score was employed to examine neurological function. Setanaxib is widely used for its preferential inhibition for NOX1/4 over other NOX isoforms. After endothelial NOX4 was inhibited by Setanaxib in a mouse model of SAH, the endothelial DHFR level was significantly elevated, which attenuated eNOS uncoupling, increased cortical perfusion, and improved the neurological function. The protective role of inhibiting endothelial NOX4, however, disappeared after knocking down endothelial DHFR. Our results suggest that endothelial DHFR decreased significantly because of the elevated level of endothelial NOX4, which aggravated eNOS uncoupling after SAH, leading to decreased cortical perfusion and worse neurological outcome.


Subject(s)
Nitric Oxide Synthase Type III , Subarachnoid Hemorrhage , Animals , Mice , Endothelial Cells/metabolism , Hydrogen Peroxide/metabolism , NADPH Oxidase 4/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
9.
Front Mol Neurosci ; 15: 972615, 2022.
Article in English | MEDLINE | ID: mdl-36311014

ABSTRACT

Background: FOSB is reported to be an oncogene in a variety of tumors. However, the expression and role of FOSB in glioma remain obscure. In this study, we aimed to explore the expression of FOSB in glioma and its biological role in glioblastoma multiforme (GBM). Methods: Western blot, immunohistochemical staining, and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression of FOSB in clinical samples. FOSB was knocked down in cells to determine the effects of FOSB on the phenotypic changes of tumors by plate cloning, CCK-8 assay, and Transwell assay. Finally, subcutaneous tumorigenesis in nude mice was used to observe the tumorigenesis of glioma cell lines after the knockdown of the FOSB gene. Results: FOSB expression was higher in glioma compared with normal brain tissue. After the downregulation of FOSB, the expression of cleaved caspase-3 increased. Plate cloning and CCK-8 experiments showed that the proliferation of glioma cell lines decreased. The Transwell assay demonstrated that the glioblastoma cell lines had lower migration ability after the knockdown of FOSB. Finally, the tumor volume of U87 glioma cells in group sh-FOSB was smaller than that in the control group. The TUNEL staining in vitro showed that the apoptosis of sh-FOSB glioma cells increased. Conclusion: FOSB was highly expressed in glioma tissues. The viability of glioma cells decreased, and the ability of glioma cells to proliferate and migrate was reduced when FOSB was downregulated. Hence, FOSB may promote the development and migration of gliomas.

10.
Neuroreport ; 33(16): 690-696, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36165027

ABSTRACT

BACKGROUND AND PURPOSE: Subarachnoid hemorrhage (SAH) is associated with sustained vasoconstriction in retinal vessels and vasoconstriction leads to retinal ischemia and hypoxia. Our previous finding also revealed the changes in hypoxia-related elements in the retina after SAH, further lending weight to the hypothesis that retinal vasospasm and hypoxia after SAH. Deferoxamine is a high-affinity iron chelator with reported neuroprotective effects against stroke. Here, we aimed to explore the effects of deferoxamine on retinal hypoxia after SAH. METHODS: SAH was established and deferoxamine was injected intraperitoneally for 3 days in the treatment group. To detect retinal new vessels, platelet endothelial cell adhesion molecule (CD31) was labeled by immunofluorescence and immunohistochemistry. Furthermore, the effects of deferoxamine on the expression of vascular endothelial growth factor A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) were revealed by western blot analysis. RESULTS: The immunofluorescence and immunohistochemical staining of CD31 revealed a marked increase in new vessels in the retinal ganglion cell layer after deferoxamine treatment. By western blot analysis, HIF-1α and VEGF-A increased gradually in the first day and then rebounded to a new level on day 7. A deferoxamine-induced increase in HIF-1α/VEGF-A expression was also confirmed by western blot. CONCLUSIONS: Our findings suggest that modulating the application of deferoxamine may offer therapeutic approaches to alleviate retinal complications after SAH.


Subject(s)
Neuroprotective Agents , Subarachnoid Hemorrhage , Animals , Cell Adhesion Molecules/therapeutic use , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit , Iron Chelating Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Retina , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Oxid Med Cell Longev ; 2022: 9069825, 2022.
Article in English | MEDLINE | ID: mdl-35855863

ABSTRACT

Ferroptosis is a regulated cell death that characterizes the lethal lipid peroxidation and iron overload, which may contribute to early brain injury (EBI) pathogenesis after subarachnoid hemorrhage (SAH). Although Sirtuin 1 (SIRT1), a class III histone deacetylase, has been proved to have endogenous neuroprotective effects on the EBI following SAH, the role of SIRT1 in ferroptosis has not been studied. Hence, we designed the current study to determine the role of ferroptosis in the EBI and explore the correlation between SIRT1 and ferroptosis after SAH. The pathways of ferroptosis were examined after experimental SAH in vivo (prechiasmatic cistern injection mouse model) and in HT-22 cells stimulated by oxyhemoglobin (oxyHb) in vitro. Then, ferrostatin-1 (Fer-1) was used further to determine the role of ferroptosis in EBI. Finally, we explored the correlation between SIRT1 and ferroptosis via regulating the expression of SIRT1 by resveratrol (RSV) and selisistat (SEL). Our results showed that ferroptosis was involved in the pathogenesis of EBI after SAH through multiple pathways, including acyl-CoA synthetase long-chain family member 4 (ACSL4) activation, iron metabolism disturbance, and the downregulation of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1). Inhibition of ferroptosis by Fer-1 significantly alleviated oxidative stress-mediated brain injury. SIRT1 activation could suppress SAH-induced ferroptosis by upregulating the expression of GPX4 and FSP1. Therefore, ferroptosis could be a potential therapeutic target for SAH, and SIRT1 activation is a promising method to inhibit ferroptosis.


Subject(s)
Brain Injuries , Ferroptosis , Sirtuin 1 , Subarachnoid Hemorrhage , Animals , Brain Injuries/metabolism , Mice , Sirtuin 1/metabolism , Subarachnoid Hemorrhage/metabolism
12.
J Neurotrauma ; 39(5-6): 423-434, 2022 03.
Article in English | MEDLINE | ID: mdl-34861788

ABSTRACT

Clinically, the renin-angiotensin-aldosterone system is activated intensely in patients with moderate to severe traumatic brain injury (TBI). Increased angiotensin II in circulatory blood after TBI can enter the brain through the disrupted blood-brain barrier. Angiotensin-converting enzyme 2 (ACE2) is an enzyme that metabolizes angiotensin II into angiotensin (1-7), which has been shown to have neuroprotective results. The expression and role of ACE2 in the brain after TBI remains elusive, however. We found that ACE2 protein abundance was downregulated around the contusional area in the brains of both humans and mice. Endogenous ACE2 was expressed in neurons, astrocytes, and microglia in the cortex of the mouse brain. Administration of recombinant human ACE2 intracerebroventricularly alleviated neurological defects after TBI in mice. Treatment of recombinant human ACE2 suppressed TBI-induced increase of angiotensin II and the decrease of angiotensin (1-7) in the brain, mitigated neural cell death, reduced the activation of NLRP3 and caspase3, decreased phosphorylation of mitogen-activated protein kinases, and nuclear factor kappa B, and reduced inflammatory cytokines tumor necrosis factor alpha and interleukin-1ß. Administration of ACE2 enzyme activator diminazene aceturate intraperitoneally rescued downregulation of ACE2 enzymatic activity and protein abundance in the brain. Diminazene aceturate treatment once per day in the acute stage after TBI alleviated long-term cognitive defects and neuronal loss in mice. Collectively, these results indicated that restoration of ACE2 alleviated neurological deficits after TBI by mitigation of pyroptosis and apoptosis.


Subject(s)
Angiotensin-Converting Enzyme 2 , Brain Injuries, Traumatic , Angiotensin II/metabolism , Animals , Apoptosis , Brain/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Humans , Mice , Peptidyl-Dipeptidase A/metabolism , Pyroptosis
13.
Front Pharmacol ; 13: 1061457, 2022.
Article in English | MEDLINE | ID: mdl-36703738

ABSTRACT

Background: Erythrocytes and their breakdown products in the subarachnoid space (SAS) are the main contributors to the pathogenesis of subarachnoid hemorrhage (SAH). Dobutamine is a potent ß1-adrenoreceptor agonist that can increase cardiac output, thus improving blood perfusion and arterial pulsation in the brain. In this study, we investigated whether the administration of dobutamine promoted the clearance of red blood cells (RBCs) and their degraded products via meningeal lymphatic vessels (mLVs), thus alleviating neurological deficits in the early stage post-SAH. Materials and methods: Experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male C57BL/6 mice. Evans blue was injected into the cisterna magna, and dobutamine was administered by inserting a femoral venous catheter. RBCs in the deep cervical lymphatic nodes (dCLNs) were evaluated by hematoxylin-eosin staining, and the hemoglobin content in dCLNs was detected by Drabkin's reagent. The accumulation of RBCs in the dura mater was examined by immunofluorescence staining, neuronal death was evaluated by Nissl staining, and apoptotic cell death was evaluated by TUNEL staining. The Morris water maze test was used to examine the cognitive function of mice after SAH. Results: RBCs appeared in dCLNs as early as 3 h post-SAH, and the hemoglobin in dCLNs peaked at 12 h after SAH. Dobutamine significantly promoted cerebrospinal fluid (CSF) drainage from the SAS to dCLNs and obviously reduced the RBC residue in mLVs, leading to a decrease in neuronal death and an improvement in cognitive function after SAH. Conclusion: Dobutamine administration significantly promoted RBC drainage from cerebrospinal fluid in the SAS via mLVs into dCLNs, ultimately relieving neuronal death and improving cognitive function.

14.
Front Immunol ; 12: 623256, 2021.
Article in English | MEDLINE | ID: mdl-34381441

ABSTRACT

Nuclear factor (NF)-κB-ty -50mediated neuroinflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). As an important negative feedback regulator of NF-κB, A20 is essential for inflammatory homeostasis. Herein, we tested the hypothesis that A20 attenuates EBI by establishing NF-κB-associated negative feedback after experimental SAH. In vivo and in vitro models of SAH were established. TPCA-1 and lentivirus were used for NF-κB inhibition and A20 silencing/overexpression, respectively. Cellular localization of A20 in the brain was determined via immunofluorescence. Western blotting and enzyme-linked immunosorbent assays were applied to observe the expression of members of the A20/tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB pathway and inflammatory cytokines (IL-6, IL-1ß, TNF-α). Evans blue staining, TUNEL staining, Nissl staining, brain water content, and modified Garcia score were performed to evaluate the neuroprotective effect of A20. A20 expression by astrocytes, microglia, and neurons was increased at 24 h after SAH. A20 and inflammatory cytokine levels were decreased while TRAF6 expression was elevated after NF-κB inhibition. TRAF6, NF-κB, and inflammatory cytokine levels were increased after A20 silencing but suppressed with A20 overexpression. Also, Bcl-2, Bax, MMP-9, ZO-1 protein levels; Evans blue, TUNEL, and Nissl staining; brain water content; and modified Garcia score showed that A20 exerted a neuroprotective effect after SAH. A20 expression was regulated by NF-κB. In turn, increased A20 expression inhibited TRAF6 and NF-κB to reduce the subsequent inflammatory response. Our data also suggest that negative feedback regulation mechanism of the A20/TRAF6/NF-κB pathway and the neuroprotective role of A20 to attenuate EBI after SAH.


Subject(s)
Brain/pathology , NF-kappa B/metabolism , Subarachnoid Hemorrhage/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Feedback, Physiological , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Animal , Signal Transduction , Subarachnoid Hemorrhage/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
15.
Neurosci Lett ; 753: 135882, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33838260

ABSTRACT

Traumatic brain injury (TBI) is a substantial clinical and social problem worldwide, causing high morbidity and mortality along with significant economic and medical costs. Forkhead box O transcription factors (FOXOs) have been found to play a critical role in the regulation of cell functions, such as nutrient metabolism, programmed cell death, and tumor suppression. In the central nervous system, FOXOs are reported to be pivotal regulators of learning and memory, neurite outgrowth, and axonal degeneration. However, the role of FOXOs in TBI is still unknown. Here, we investigate changes in the expression of FOXOs in the acute stage following TBI. First, we evaluated the expression of FOXO proteins in the brains of humans after TBI. A TBI model was then established in mice, and the ipsilateral cerebral cortex was collected at 3 h, 6 h, 9 h, 12 h, 24 h, and 72 h post-TBI. The dynamic expression of Foxo proteins was observed. Neuron-specific localization of Foxos was detected by double immunofluorescence staining. Following TBI, FOXO proteins in the brains of humans were significantly increased. In mice, Foxo protein levels generally peaked at 24 h. By examining co-localization with neurons, the proportion of Foxo(+) neurons was found to increase following TBI and peak at 24 h. This study reveals the time-dependent and neuron-specific expression of Foxos following TBI in mice, providing insight to enhance understanding of the role of Foxos in TBI.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain/pathology , Forkhead Transcription Factors/metabolism , Adolescent , Adult , Aged , Animals , Brain/cytology , Brain/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism
16.
Neuroreport ; 32(6): 472-478, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33788818

ABSTRACT

Traumatic brain injury (TBI) is recognized as the most influential risk factor for neurodegenerative diseases later in life, including Alzheimer's disease. The aberrant genesis of amyloid-ß peptides, which is triggered by TBI, is associated with the development of Alzheimer's disease. Evidence suggests that iron plays a role in both the production of amyloid-ß and its neurotoxicity, and iron overload has been noted in the brain after TBI. We therefore investigated the effects of an iron-chelating treatment on amyloid-ß genesis in a weight-drop model of TBI in mice. Human brain samples were obtained from patients undergoing surgery for severe brain trauma. The Institute of Cancer Research mice were treated with deferoxamine by intraperitoneal injection after TBI induction. Changes in amyloid-ß(1-42) were assessed using western blot and immunohistochemical staining. Ferritin was also detected using western blot to investigate iron deposition in the mice brain. Immunofluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was also performed to evaluate neural apoptosis. The amyloid-ß(1-42) was markedly elevated after TBI in both humans and mice. Deferoxamine treatment in mice significantly decreased the levels of both amyloid-ß(1-42) and ferritin in the brain, and reduced TBI-induced neural cell apoptosis. The iron chelator deferoxamine can alleviate the increase of amyloid-ß(1-42) in the brain after TBI, and may therefore be a potential therapeutic strategy to prevent TBI patients from undergoing neurodegenerative processes.


Subject(s)
Amyloid beta-Peptides/drug effects , Apoptosis/drug effects , Brain Injuries, Traumatic/metabolism , Brain/drug effects , Deferoxamine/pharmacology , Ferritins/metabolism , Neurons/drug effects , Peptide Fragments/drug effects , Siderophores/pharmacology , Adult , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/pathology , Humans , In Situ Nick-End Labeling , Male , Mice , Neurons/metabolism , Neurons/pathology , Peptide Fragments/metabolism
17.
Int J Med Sci ; 18(2): 304-313, 2021.
Article in English | MEDLINE | ID: mdl-33390799

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Endothelial Cells/drug effects , Fingolimod Hydrochloride/administration & dosage , Animals , Apoptosis/drug effects , Astrocytes/pathology , Blood-Brain Barrier/cytology , Blood-Brain Barrier/pathology , Brain Injuries, Traumatic/pathology , Capillary Permeability/drug effects , Disease Models, Animal , Endothelial Cells/pathology , Humans , Injections, Intraperitoneal , Mice , Mice, Inbred ICR
18.
Neurosci Lett ; 742: 135554, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33352284

ABSTRACT

BACKGROUND AND PURPOSE: The patients who survive subarachnoid hemorrhage (SAH) often have long-term neurological complications. There are no reports about the pathological change of retina after SAH. METHODS: An experimental model of SAH was established by injecting autologous blood into the prechiasmatic cistern of Sprague-Dawley rats. Hematoxylin and eosin (HE) staining was performed to show the alternation of morphology in retina after SAH. To detect the retinal new vessels (NVs), CD31 was labelled by immunofluorescence and immunohistochemistry. The time-course expressions of vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α (HIF-1 α) was also revealed by Western blot analysis. RESULTS: A clear reduction of retinal ganglion cells (RGCs) was noticed after SAH. The immunofluorescence and immunohistochemical staining of CD31 reveals a large number of NVs in RGC layer after SAH compared with the normal controls. The level of VEGF-A in the retina after SAH was increased and peaked at 12h and 14 d. The expression of HIF-1α in the retina increased as early as 3 h after SAH, reached a peak at 12 h after SAH. CONCLUSIONS: The results showed that SAH induced the retina hypoxia resulting in the reduction of RGCs, increase of NVs and activation of NVs related HIF-1α/VEGF-A pathway.


Subject(s)
Hypoxia/metabolism , Retina/metabolism , Subarachnoid Hemorrhage/metabolism , Animals , Hypoxia/etiology , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Rats , Rats, Sprague-Dawley , Retina/pathology , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/pathology , Vascular Endothelial Growth Factor A/metabolism
19.
Life Sci ; 257: 118050, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32634425

ABSTRACT

BACKGROUND AND PURPOSE: Early brain injury is an essential pathological process after subarachnoid hemorrhage (SAH), with many cell death modalities. Ferroptosis is a newly discovered regulated cell death caused by the iron-dependent accumulation of lipid peroxidation, which can be prevented by glutathione peroxidase 4 (GPX4). Our study aimed to investigate the role of GPX4 in neuronal cell death after experimental SAH. METHODS: In vivo experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Meanwhile, the in vitro SAH model was performed with primary rat cortical neurons cultured in medium containing hemoglobin (Hb). Adenovirus was used to overexpress GPX4 before experimental SAH. GPX4 expression was detected by western blot and immunofluorescence experiments. Malondialdehyde (MDA) was measured to evaluate the level of lipid peroxidation. Nissl staining was employed to assess cell death in vivo, whereas lactate dehydrogenase (LDH) release was used to evaluate cell damage in vitro. The brain water content and neurological deficits were evaluated to determine brain injury. RESULTS: Endogenous GPX4 was mainly expressed in neurons, and its expression decreased at 24 h after experimental SAH. Overexpression of GPX4 significantly reduced lipid peroxidation and cell death in the experimental SAH models both in vivo and in vitro. Moreover, overexpression of GPX4 ameliorated brain edema and neurological deficits at 24 h after SAH. CONCLUSIONS: The decrease of GPX4 expression potentially plays an important role in ferroptosis during early brain injury after SAH. Overexpression of GPX4 has a neuroprotective effect after SAH.


Subject(s)
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/therapeutic use , Subarachnoid Hemorrhage/drug therapy , Animals , Antioxidants/pharmacology , Brain/metabolism , Brain Edema/pathology , Brain Injuries/etiology , Cell Death/drug effects , Disease Models, Animal , Ferroptosis/drug effects , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Neurons/drug effects , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/metabolism
20.
Cell Death Dis ; 11(1): 76, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001670

ABSTRACT

Only a few types of inflammasomes have been described in central nervous system cells. Among these, the absent in melanoma 2 (AIM2) inflammasome is primarily found in neurons, is highly specific and can be activated only by double-stranded DNA. Although it has been demonstrated that the AIM2 inflammasome is activated by poly(deoxyadenylic-deoxythymidylic) acid sodium salt and leads to pyroptotic neuronal cell death, the role of AIM2 inflammasome-mediated pyroptosis in early brain injury (EBI) after subarachnoid haemorrhage (SAH) has rarely been studied. Thus, we designed this study to explore the mechanism of gasdermin D(GSDMD)-induced pyroptosis mediated by the AIM2 inflammasome in EBI after SAH. The level of AIM2 from the cerebrospinal fluid (CSF) of patients with SAH was detected. The pathway of AIM2 inflammasome-mediated pyroptosis, the AIM2/Caspase-1/GSDMD pathway, was explored after experimental SAH in vivo and in primary cortical neurons stimulated by oxyhaemoglobin (oxyHb) in vitro. Then, we evaluated GSDMD-induced pyroptosis mediated by the AIM2 inflammasome in AIM2 and caspase-1- deficient mice and primary cortical neurons generated through lentivirus (LV) knockdown. Compared with that of the control samples, the AIM2 level in the CSF of the patients with SAH was significantly increased. Pyroptosis-associated proteins mediated by the AIM2 inflammasome were significantly increased in vivo and in vitro following experimentally induced SAH. After AIM2 and caspase-1 were knocked down by an LV, GSDMD-induced pyroptosis mediated by the AIM2 inflammasome was alleviated in EBI after SAH. Intriguingly, when caspase-1 was knocked down, apoptosis was significantly suppressed via impeding the activation of caspase-3. GSDMD-induced pyroptosis mediated by the AIM2 inflammasome may be involved in EBI following SAH. The inhibition of AIM2 inflammasome activation caused by knocking down AIM2 and caspase-1 alleviates GSDMD-induced pyroptosis in EBI after SAH.


Subject(s)
Brain Injuries/metabolism , DNA-Binding Proteins/cerebrospinal fluid , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/genetics , Subarachnoid Hemorrhage/metabolism , Animals , Brain Injuries/genetics , Caspase 1/genetics , Caspase 1/metabolism , Caspase 3/metabolism , Cells, Cultured , DNA-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Neurons/ultrastructure , Phosphate-Binding Proteins/genetics , Pyroptosis/physiology , Subarachnoid Hemorrhage/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...