Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.098
Filter
1.
Vet Res ; 55(1): 78, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877574

ABSTRACT

Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.


Subject(s)
Endoplasmic Reticulum Stress , Epithelial Cells , Oxidative Stress , Serpins , Trichinella spiralis , Animals , Endoplasmic Reticulum Stress/drug effects , Trichinella spiralis/physiology , Mice , Oxidative Stress/drug effects , Swine , Serpins/metabolism , Serpins/genetics , Serine Proteinase Inhibitors/pharmacology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Jejunum/drug effects
2.
Aging Cell ; : e14229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831635

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

3.
J Control Release ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851535

ABSTRACT

Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.

4.
Mater Horiz ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842068

ABSTRACT

Intramolecular exciplex systems featuring thermally activated delayed fluorescence (TADF) have garnered significant attention in the realm of organic light-emitting diodes (OLEDs). Nonetheless, the occurrence of organic sandwich intramolecular exciplexes remains rare due to structural limitations and synthetic challenges. Herein, we present a novel rigid acceptor-donor-acceptor (A-D-A) sandwich complex, dSFQP, characterized by two sp3 C-locking moieties. This compound exhibits TADF characteristics facilitated by a multiple through-space charge-transfer process. X-ray crystallographic analysis confirms the distinctive sandwich configuration. The parallel spatial arrangement and minimized A-D-A configuration enhance electronic interactions, resulting in a high photoluminescence quantum yield, rapid reverse intersystem crossing rate, and sluggish nonradiative decay rate. OLEDs employing dSFQP as the dopant achieve a maximum external quantum efficiency (EQE) of 28.5% with a low efficiency roll-off of merely 2.8% at 1000 cd m-2. Even at a high brightness of 10 000 cd m-2, the EQE remains notably high at 17.5%. Our current results provide an effective way to further innovate the design of new organic charge-transfer complexes.

5.
Nat Commun ; 15(1): 5228, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898022

ABSTRACT

C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.


Subject(s)
Boronic Acids , Palladium , Palladium/chemistry , Catalysis , Boronic Acids/chemistry , Glycosides/chemistry , Glycosides/chemical synthesis , DNA/chemistry
6.
Transl Pediatr ; 13(5): 840-846, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38840680

ABSTRACT

Background: Proboscis lateralis (PL) is a rare congenital malformation of the craniofacial structure. On the basis of 34 reported cases, Boo-Chai developed the first classification system in 1985 based on commonly associated anomalies of the eyes, palate, and lips. Sinonasal deformity is the most prevalent systemic abnormality associated with PL, accounting for 87.9%, and concomitant ocular anomalies account for 44-70%. Case Description: We report a case of PL in a 20-month-old female patient with a mass in the left medial canthal area, and ipsilateral symptomatic epiphora. The removal of the proboscis at 4 months without the reconstruction of the nasolacrimal duct resulted in secondary sequelae that lasted 16 months. A second operation by a multidisciplinary team released the pressure on the lacrimal sac and reconstructed the lacrimal system. External dacryocystorhinostomy (DCR) is performed through the original external incision aided by nasal endoscopic examination. The bony passage between the nasal cavity and the lacrimal sac was reconstructed, and nasal endoscopy revealed a wide opening in the nasal cavity of at least 6 mm. Follow ups ensured a patent nasal airway, without complications. Conclusions: It is instructive to learn from this case that treatment plans for PL should consider associated ocular anomalies and lacrimal drainage reconstruction, following a comprehensive and multidisciplinary approach.

7.
Opt Express ; 32(8): 14200-14210, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859372

ABSTRACT

A four-wavelength passive demodulation algorithm is proposed and experimentally demonstrated for the interrogation of the one cavity in a dual-cavity extrinsic Fabry-Perot interferometric (EFPI) sensor. The lengths of two cavities are adjusted to generate four quadrature signals for each individual cavity. Both simulation and experimental results are presented to validate the performance of this technique. The experimental results demonstrate that dynamic signals at frequencies of 100 Hz, 200 Hz, and 300 Hz with varying amplitude are successfully extracted from a dual-cavity EFPI sensor with initial lengths of 93.4803 µm and 94.0091 µm. The technique shows the potential application to measure dynamic signals in dual-cavity fiber-optic EFPI sensors.

8.
Obstet Gynecol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870533

ABSTRACT

OBJECTIVE: To examine temporal trends and risk factors for congenital syphilis in newborn hospitalizations and to evaluate the association between adverse outcomes and congenital syphilis and health care utilization for newborn hospitalizations complicated by congenital syphilis. METHODS: We conducted a retrospective, cross-sectional study using data from the National Inpatient Sample to identify newborn hospitalizations in the United States between 2016 and 2020. Newborns with congenital syphilis were identified with International Classification of Diseases, Tenth Revision, Clinical Modification codes. Adverse outcomes, hospital length of stay, and hospital costs were examined. The annual percent change was calculated to assess congenital syphilis trend. A multivariable Poisson regression model with robust error variance was used to examine the association between congenital syphilis and adverse outcomes. Adjusted relative risks (RRs) with 95% CIs were calculated. A multivariable generalized linear regression model was used to examine the association between congenital syphilis and hospital length of stay and hospital costs. Adjusted mean ratios with 95% CIs were calculated. RESULTS: Of 18,119,871 newborn hospitalizations in the United States between 2016 and 2020, the rate of congenital syphilis increased over time (annual percent change 24.6%, 95% CI, 13.0-37.3). Newborn race and ethnicity, insurance, household income, year of admission, and hospital characteristics were associated with congenital syphilis. In multivariable models, congenital syphilis was associated with preterm birth before 37 weeks of gestation (adjusted RR 2.22, 95% CI, 2.02-2.44) and preterm birth before 34 weeks of gestation (adjusted RR 2.39, 95% CI, 2.01-2.84); however, there was no association with low birth weight or neonatal in-hospital death. Compared with newborns without congenital syphilis, hospital length of stay (adjusted mean ratio 3.53, 95% CI, 3.38-3.68) and hospital costs (adjusted mean ratio 4.93, 95% CI, 4.57-5.32) were higher among those with congenital syphilis. CONCLUSION: Among newborn hospitalizations in the United States, the rate of congenital syphilis increased from 2016 to 2020. Congenital syphilis was associated with preterm birth, longer hospital length of stay, and higher hospital costs.

9.
J Med Virol ; 96(6): e29743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884419

ABSTRACT

As one of the most effective measures to prevent seasonal influenza viruses, annual influenza vaccination is globally recommended. Nevertheless, evidence regarding the impact of repeated vaccination to contemporary and future influenza has been inconclusive. A total of 100 subjects singly or repeatedly immunized with influenza vaccines including 3C.2a1 or 3C.3a1 A(H3N2) during 2018-2019 and 2019-2020 influenza season were recruited. We investigated neutralization antibody by microneutralization assay using four antigenically distinct A(H3N2) viruses circulating from 2018 to 2023, and tracked the dynamics of B cell receptor (BCR) repertoire for consecutive vaccinations. We found that vaccination elicited cross-reactive antibody responses against future emerging strains. Broader neutralizing antibodies to A(H3N2) viruses and more diverse BCR repertoires were observed in the repeated vaccination. Meanwhile, a higher frequency of BCR sequences shared among the repeated-vaccinated individuals with consistently boosting antibody response was found than those with a reduced antibody response. Our findings suggest that repeated seasonal vaccination could broaden the breadth of antibody responses, which may improve vaccine protection against future emerging viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cross Reactions , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Adult , Cross Reactions/immunology , Male , Female , Vaccination , Middle Aged , Young Adult , Neutralization Tests , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Adolescent
10.
Am J Perinatol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38806155

ABSTRACT

OBJECTIVE: The study's primary objective was to evaluate adverse outcomes among reproductive-age hospitalizations with diabetic ketoacidosis (DKA), comparing those that are pregnancy-related versus nonpregnancy-related and evaluating temporal trends. STUDY DESIGN: We conducted a retrospective cross-sectional study using the National Inpatient Sample to identify hospitalizations with DKA among reproductive-age women (15-49 years) in the United States (2016-2020). DKA in pregnancy hospitalizations was compared with DKA in nonpregnant hospitalizations. Adverse outcomes evaluated included mechanical ventilation, coma, seizures, renal failure, prolonged hospital stay, and in-hospital death. Multivariable Poisson regression models with robust error variance were used to estimate adjusted relative risk (aRR) and 95% confidence interval (CI). Annual percent change (APC) was used to calculate the change in DKA rate over time. RESULTS: Among 35,210,711 hospitalizations of reproductive-age women, 447,600 (1.2%) were hospitalized with DKA, and among them, 13,390 (3%) hospitalizations were pregnancy-related. The rate of nonpregnancy-related DKA hospitalizations increased over time (APC = 3.8%, 95% CI = 1.5-6.1). After multivariable adjustment, compared with pregnancy-related hospitalizations with DKA, the rates of mechanical ventilation (aRR = 1.56, 95% CI = 1.18-2.06), seizures (aRR = 2.26, 95% CI = 1.72-2.97), renal failure (aRR = 2.26, 95% CI = 2.05-2.50), coma (aRR = 2.53, 95% CI = 1.68-3.83), and in-hospital death (aRR = 2.38, 95% CI = 1.06-5.36) were higher among nonpregnancy-related hospitalizations with DKA. CONCLUSION: A nationally representative sample of hospitalizations indicates that over the 5-year period, the rate of nonpregnancy-related DKA hospitalizations increased among reproductive age women, and a higher risk of adverse outcomes was observed when compared with pregnancy-related DKA hospitalizations. KEY POINTS: · Over 5 years, the rate of pregnancy-related DKA hospitalizations was stable.. · Over 5 years, the rate of nonpregnancy-related DKA hospitalizations increased.. · There is a higher risk of adverse outcomes with DKA outside of pregnancy..

11.
Sci Rep ; 14(1): 10324, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710800

ABSTRACT

Various substances in the blood plasma serve as prognostic indicators of the progression of COVID-19. Consequently, multi-omics studies, such as proteomic and metabolomics, are ongoing to identify accurate biomarkers. Cytokines and chemokines, which are crucial components of immune and inflammatory responses, play pivotal roles in the transition from mild to severe illness. To determine the relationship between plasma cytokines and the progression of COVID-19, we used four study cohorts to perform a systematic study of cytokine levels in patients with different disease stages. We observed differential cytokine expression between patients with persistent-mild disease and patients with mild-to-severe transformation. For instance, IL-4 and IL-17 levels significantly increased in patients with mild-to-severe transformation, indicating differences within the mild disease group. Subsequently, we analysed the changes in cytokine and chemokine expression in the plasma of patients undergoing two opposing processes: the transition from mild to severe illness and the transition from severe to mild illness. We identified several factors, such as reduced expression of IL-16 and IL-18 during the severe phase of the disease and up-regulated expression of IL-10, IP-10, and SCGF-ß during the same period, indicative of the deterioration or improvement of patients' conditions. These factors obtained from fine-tuned research cohorts could provide auxiliary indications for changes in the condition of COVID-19 patients.


Subject(s)
COVID-19 , Chemokines , Cytokines , Disease Progression , Humans , COVID-19/blood , COVID-19/immunology , Cytokines/blood , Female , Male , Middle Aged , Cohort Studies , Chemokines/blood , Aged , Biomarkers/blood , Adult , SARS-CoV-2 , Severity of Illness Index
13.
Theranostics ; 14(7): 2687-2705, 2024.
Article in English | MEDLINE | ID: mdl-38773980

ABSTRACT

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Subject(s)
Alveolar Epithelial Cells , Bleomycin , Disease Models, Animal , Iron , Mitochondria , Pulmonary Fibrosis , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Mice , Iron/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Mice, Inbred C57BL , Cell Line , Male
14.
Front Microbiol ; 15: 1402319, 2024.
Article in English | MEDLINE | ID: mdl-38808277

ABSTRACT

The toxin-antitoxin (TA) system plays a key role in bacteria escaping antibiotic stress with persistence, however, the mechanisms by which persistence is controlled remain poorly understood. Weissella cibaria, a novel probiotic, can enters a persistent state upon encountering ciprofloxacin stress. Conversely, it resumes from the persistence when ciprofloxacin stress is relieved or removed. Here, it was found that PemIK TA system played a role in transitioning between these two states. And the PemIK was consisted of PemK, an endonuclease toxic to mRNA, and antitoxin PemI which neutralized its toxicity. The PemK specifically cleaved the U↓AUU in mRNA encoding enzymes involved in glycolysis, TCA cycle and respiratory chain pathways. This cleavage event subsequently disrupted the crucial cellular processes such as hydrogen transfer, electron transfer, NADH and FADH2 synthesis, ultimately leading to a decrease in ATP levels and an increase in membrane depolarization and persister frequency. Notably, Arg24 was a critical active residue for PemK, its mutation significantly reduced the mRNA cleavage activity and the adverse effects on metabolism. These insights provided a clue to comprehensively understand the mechanism by which PemIK induced the persistence of W. cibaria to escape ciprofloxacin stress, thereby highlighting another novel aspect PemIK respond for antibiotic stress.

15.
Nat Commun ; 15(1): 3723, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697973

ABSTRACT

Indan and tetralin are widely used as fuel additives and the intermediates in the manufacture of thermal-stable jet fuel, many chemicals, medicines, and shockproof agents for rubber industry. Herein, we disclose a two-step route to selectively produce 5-methyl-2,3-dihydro-1H-indene (abbreviated as methylindan) and tetralin with xylose or the hemicelluloses from agricultural or forestry waste. Firstly, cyclopentanone (CPO) was selectively formed with ~60% carbon yield by the direct hydrogenolysis of xylose or hemicelluloses on a non-noble bimetallic Cu-La/SBA-15 catalyst. Subsequently, methylindan and tetralin were selectively produced with CPO via a cascade self-aldol condensation/rearrangement/aromatization reaction catalyzed by a commercial H-ZSM-5 zeolite. When we used cyclohexanone (another lignocellulosic cycloketone) in the second step, the main product switched to dimethyltetralin. This work gives insights into the selective production of bicyclic aromatics with lignocellulose.

16.
Int J Biol Macromol ; 271(Pt 2): 132376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750865

ABSTRACT

Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.


Subject(s)
Biocompatible Materials , Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Printing, Three-Dimensional , Tissue Scaffolds , Vascular Endothelial Growth Factor A , Animals , Tissue Scaffolds/chemistry , Rats , Islets of Langerhans Transplantation/methods , Vascular Endothelial Growth Factor A/metabolism , Diabetes Mellitus, Experimental/therapy , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/blood supply , Islets of Langerhans/metabolism , Male , Neovascularization, Physiologic/drug effects , Rats, Sprague-Dawley , Peroxides
17.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654010

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Fibroblast Growth Factor 7 , Islets of Langerhans , Organoids , Animals , Humans , Male , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Human Embryonic Stem Cells/metabolism , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Islets of Langerhans/virology , Islets of Langerhans/pathology , Organoids/virology , Organoids/metabolism , Organoids/pathology , SARS-CoV-2/genetics
18.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575732

ABSTRACT

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase , Mice, Inbred BALB C , Radiation Tolerance , p300-CBP Transcription Factors , Humans , Animals , DNA-Activated Protein Kinase/metabolism , Mice , p300-CBP Transcription Factors/metabolism , HeLa Cells , Mice, Nude , Female , Protein Processing, Post-Translational , Neoplasms/radiotherapy , Neoplasms/metabolism , Neoplasms/genetics , Xenograft Model Antitumor Assays
19.
Phys Eng Sci Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647634

ABSTRACT

We proposed a deep learning approach to classify various error types in daily VMAT treatment of head and neck cancer patients based on EPID dosimetry, which could provide additional information to support clinical decisions for adaptive planning. 146 arcs from 42 head and neck patients were analyzed. Anatomical changes and setup errors were simulated in 17,820 EPID images of 99 arcs obtained from 30 patients using in-house software for model training, validation, and testing. Subsequently, 141 clinical EPID images from 47 arcs belonging to the remaining 12 patients were utilized for clinical testing. The hierarchical convolutional neural network (HCNN) model was trained to classify error types and magnitudes using EPID dose difference maps. Gamma analysis with 3%/2 mm (dose difference/distance to agreement) criteria was also performed. The F1 score, a combination of precision and recall, was utilized to evaluate the performance of the HCNN model and gamma analysis. The adaptive fractioned doses were calculated to verify the HCNN classification results. For error type identification, the overall F1 score of the HCNN model was 0.99 and 0.91 for primary type and subtype identification, respectively. For error magnitude identification, the overall F1 score in the simulation dataset was 0.96 and 0.70 for the HCNN model and gamma analysis, respectively; while the overall F1 score in the clinical dataset was 0.79 and 0.20 for the HCNN model and gamma analysis, respectively. The HCNN model-based EPID dosimetry can identify changes in patient transmission doses and distinguish the treatment error category, which could potentially provide information for head and neck cancer treatment adaption.

20.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636221

ABSTRACT

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...