Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Obes Metab ; 24(7): 1224-1234, 2022 07.
Article in English | MEDLINE | ID: mdl-35257467

ABSTRACT

AIM: To explore how bariatric surgery (BS) modified the obesity-associated gut microbiome, the host metabolome, and their interactions in obese Korean patients. MATERIALS AND METHODS: Stool and fasting blood samples were obtained before and 1, 3, 6, and 12 months after BS from 52 patients enrolled in the Korean Obesity Surgical Treatment Study. We analysed the gut microbiome by 16S rRNA gene sequencing and the serum metabolome, including bile acids, by nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography/triple quadrupole mass spectrometry. RESULTS: Stool metagenomics showed that 27 microbiota were enriched and 14 microbiota were reduced after BS, whereas the abundances and diversity of observed features were increased. The levels of branched-chain amino acids and metabolites of energy metabolism in serum were decreased after surgery, whereas the levels of metabolites related to microbial metabolism, including dimethyl sulphone, glycine, and secondary bile acids, were increased in the serum samples. In addition, we found notable mutual associations among metabolites and gut microbiome changes attributed to BS. CONCLUSIONS: Changes in the gut microbiome community and systemic levels of amino acids and sugars were directly derived from anatomical changes in the gastrointestinal tract after BS. We hypothesized that the observed increases in microbiome-related serum metabolites were a result of complex and indirect changes derived from BS. Ethnic-specific environmental or genetic factors could affect Korean-specific postmetabolic modification in obese patients who undergo BS.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Bile Acids and Salts , Gastrointestinal Microbiome/genetics , Humans , Metabolome , Metabolomics/methods , Metagenomics , Obesity/surgery , RNA, Ribosomal, 16S/genetics
2.
J Clin Med ; 10(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34768610

ABSTRACT

Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite, has been implicated as a novel risk factor for cardiovascular events related to obesity and type 2 diabetes mellitus (T2DM). The aim of the study was to test the hypothesis if TMAO is associated with the reduction of cardiovascular disease in the Korean obese patients who underwent bariatric surgery. From a subgroup of a multicenter, nonrandomized, controlled trial, titled KOBESS, 38 obese patients, 18 with and 20 without T2DM, who underwent Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) were investigated. Bariatric surgery is indicated for Korean patients with a body mass index (BMI) ≥ 35 kg/m2 or for Korean patients with a BMI ≥ 30 kg/m2 who have comorbidities. Serum levels of TMAO and its precursors, betaine, carnitine, and choline were measured before and six months after bariatric surgery. The levels of TMAO and its precursors did not differ between obese patients with T2DM and non-T2DM at baseline. However, TMAO increased more than twofold in patients with T2DM after RYGB surgery, but not in patients without T2DM. Choline levels were decreased by half in all patients after RYGB. In patients with T2DM who underwent SG, TMAO, betaine, and carnitine levels did not change after the surgery. Furthermore, in obese patients who underwent bariatric surgery, increased TMAO levels were associated with both T2DM and RYGB, while reduced choline levels were associated with RYGB. These associations need to be further elucidated in follow-up studies to gain further insights into the relationship between TMAO levels and bariatric surgery outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...