Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Lasers Surg Med ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39308037

ABSTRACT

OBJECTIVES: This retrospective study evaluates the effectiveness of pulsed dye laser (PDL) treatment in early versus late treatment groups for traumatic or postoperative scars. The study aims to determine the threshold between early and late treatment. Additionally, it investigates factors that may influence wound healing outcomes. METHODS: The medical records of 147 patients who underwent PDL treatment at our institution between January 2018 and December 2022 were retrospectively reviewed. Inclusion criteria were patients receiving PDL treatment for traumatic or postoperative scars. Out of these patients, we selected those who were willing to receive telephone interviews or re-visit at a scheduled time. Eventually, 52 participants were included in our study. A standardized questionnaire was administered to all participants during telephone interviews, encompassing inquiries regarding their medical history, treatment experiences, and the patient component of the Patient and Observer Scar Assessment Scale. Among the enrolled patients, 38 were contacted and interviewed via telephone, while the remaining 14 patients attended follow-up visits where photographs of their current skin condition were captured. The pretreatment and latest follow-up photographs obtained from the clinical database were independently scored in a blinded manner by two dermatologist reviewers using both the Vancouver Scar Scale and the Manchester Scar Scale. RESULTS: Among the 52 patients, 43 (82.7%) were successfully treated with good response. The correlation coefficients between week-to-treatment initiation and posttreatment MSS and VSS among patients with good response were 0.50 (p < 0.001) and 0.46 (p = 0.002), respectively. Given these findings, we established a treatment initiation threshold of 10 weeks, distinguishing patients into early and late treatment groups. The early treatment group showed borderline significantly lower posttreatment MSS and VSS scores than the late treatment group (MSS: 7.5 ± 2.1 vs. 9.3 ± 2.5, p = 0.011; VSS: 2.8 ± 2.0 vs. 4.5 ± 2.3, p = 0.011). Furthermore, both MSS and VSS of posttreatment showed significantly greater improvement in the early treatment group (4.4 ± 1.6 vs. 3.2 ± 1.9; p = 0.03 and 3.8 ± 1.8 vs. 2.8 ± 1.4; p = 0.04). CONCLUSIONS: Early intervention using a PDL within 10 weeks post-injury achieved better outcomes in treating traumatic and postoperative scars based on both clinical and patient opinions.

2.
Adv Sci (Weinh) ; : e2405829, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145423

ABSTRACT

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here, it is reported that the development of small molecule degraders of the envelope (E) protein of dengue virus. Two classes of bivalent E-degraders are developed by linking two previously reported E-binding small molecules, GNF-2, and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E-degrader with ABL inhibitory activity while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof of concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class of direct-acting antiviral drugs.

3.
Nat Commun ; 15(1): 6559, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095340

ABSTRACT

Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C2v and C4v symmetry denoted as C2v-OC-4 and C4v-OC-4, respectively. Heating induces the efficient stepwise conversion of C2v- to C4v-OC-4 via a Cs-symmetric intermediate (Cs-OC-4). It differs from the typical transition state-mediated processes of simple C-C single bond rotations. Hydrolysis and further esterification with a countercation dependence promote the generation of C2v- and Cs-OC-4 from C4v-OC-4. In contrast to C2v-OC-4, C4v-OC-4 can bind linear guests to form pseudo-rotaxans, or bind C60 or C70 efficiently. The present study highlights the differences in recognition behavior that can result from conformational interconversion, as well as providing insights into the basic parameters that govern coupled molecular rotations.

4.
Cell Death Discov ; 10(1): 381, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187478

ABSTRACT

Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.

5.
Curr Pharm Des ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39171590

ABSTRACT

BACKGROUND: The beneficial effects of nicotinamide mononucleotide (NMN) on heart disease have been reported, but the effects of NMN on high-fat diet-induced hypertrophic cardiomyopathy (HCM) and its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of NMN in HCM using network pharmacology and molecular docking. METHODS: Active targets of NMN were obtained from SWISS, CNKI, PubMed, DrugBank, BingingDB, and ZINC databases. HCM-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, PharmGKB, and DisGeNET databases. A Protein-Protein Interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking. RESULTS: In total, 265 active targets of NMN and 3918 potential targets of HCM were identified. A topological analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of NMN were mediated by genes related to inflammation, apoptosis, and oxidative stress, as well as the FOXO and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets. CONCLUSION: The possible targets and pathways of NMN in the treatment of HCM have been successfully predicted by this investigation. It provides a novel approach for further investigation into the molecular processes of NMN in HCM treatment.

6.
Angew Chem Int Ed Engl ; 63(41): e202409713, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39031452

ABSTRACT

The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecules, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41×10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56×10-3, and in powder film, it is 5.00×10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.

7.
Org Lett ; 26(35): 7279-7284, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39024649

ABSTRACT

A chiral W-shaped fully π-extended double [7]helicene (ED7H) has been synthesized and fully characterized. It displays fluorescence emission (λem = 636 nm) with a quantum yield (Φf) of 0.10. In comparison to its X-shaped and monomict π-extended [7]helicene analogues, enantiopure W-shaped ED7H exhibited superior chiral optical characteristics, including distinct circular dichroism signals from 400 to 650 nm, a good dissymmetric emission factor |glum| of 4 × 10-3, and a circularly polarized luminescence brightness value BCPL of 42 M-1 cm-1.

8.
ACS Cent Sci ; 10(6): 1148-1155, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38947209

ABSTRACT

Electron transport chains (ETCs) are ubiquitous in nearly all living systems. Replicating the complexity and control inherent in these multicomponent systems using ensembles of small molecules opens up promising avenues for molecular therapeutics, catalyst design, and the development of innovative energy conversion and storage systems. Here, we present a noncovalent, multistep artificial electron transport chains comprising cyclo[8]pyrrole (1), a meso-aryl hexaphyrin(1.0.1.0.1.0) (naphthorosarin 2), and the small molecules I2 and trifluoroacetic acid (TFA). Specifically, we show that 1) electron transfer occurs from 1 to give I3 - upon the addition of I2, 2) proton-coupled electron transfer (PCET) from 1 to give H 3 2 •2+ and H 3 2 + upon the addition of TFA to a dichloromethane mixture of 1 and 2, and 3) that further, stepwise treatment of 1 and 2 with I2 and TFA promotes electron transport from 1 to give first I3 - and then H 3 2 •2+ and H 3 2 + . The present findings are substantiated through UV-vis-NIR, 1H NMR, electron paramagnetic resonance (EPR) spectroscopic analyses, cyclic voltammetry studies, and DFT calculations. Single-crystal structure analyses were used to characterize compounds in varying redox states.

9.
Cancers (Basel) ; 16(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39061140

ABSTRACT

Glioblastoma (GBM), as the most common primary brain tumor, usually results in an extremely poor prognosis, in which glioma stem cells (GSCs) and their immunosuppressive microenvironment prominently intervene in the resistance to radiotherapy and chemotherapy that directly leads to tumor recurrence and shortened survival time. The specific mechanism through which exosomes generated from GSCs support the creation of an immunosuppressive microenvironment remains unknown, while it is acknowledged to be engaged in intercellular communication and the regulation of the glioma immunosuppressive microenvironment. The elevated expression of LncRNA-NEAT1 was found in glioma cells after radiotherapy, chemotherapy, and DNA damage stimulation, and NEAT1 could promote the malignant biological activities of GSCs. Emerging evidence suggests that lncRNAs may reply to external stimuli or DNA damage by playing a role in modulating different aspects of tumor biology. Our study demonstrated a promotive role of the carried NEAT1 by GSC-derived exosomes in the polarization of M2-like macrophages. Further experiments demonstrated the mediative role of miR-125a and its target gene STAT3 in NEAT1-induced polarization of M2-like macrophages that promote glioma progression. Our findings elucidate the mechanism by which GSCs influence the polarization of M2-like macrophages through exosomes, which may contribute to the formation of immunosuppressive microenvironments. Taken together, our study reveals the miR-125a-STAT3 pathway through which exosomal NEAT1 from treatment-resistant GSCs contributes to M2-like macrophage polarization, indicating the potential of exosomal NEAT1 for treating glioma.

10.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854003

ABSTRACT

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.

11.
Angew Chem Int Ed Engl ; 63(36): e202407805, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38870085

ABSTRACT

New stimulus-responsive scaffolds are of interest as constituents of hierarchical supramolecular ensembles. 1,3,5-2,4,6-Functionalized, facially segregated benzene moieties have a time-honored role as building blocks for host molecules. However, their user as switchable motifs in the construction of multi-component supramolecular structures remains poorly explored. Here, we report a molecular cage 1, which consists of a bent anthracene dimer 3 paired with 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene 2. As the result of the pH-induced ababab↔bababa isomerization of the constituent-functionalized benzene units derived from 2, this cage can reversibly convert between an open state and a closed form, both in solution and in the solid state. Cage 1 was used to create stimuli-responsive hierarchical superstructures, namely Russian doll-like complexes with [K⊂18-crown-6⊂1]+ and [K⊂cryptand-222⊂1]+. The reversible assembly and disassembly of these superstructures could be induced by switching cage 1 from its open to closed form. The present study thus provides an unusual example where pH-triggered conformation motion within a cage-like scaffold is used to control the formation and disassociation of hierarchical ensembles.

12.
Nat Commun ; 15(1): 5179, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898037

ABSTRACT

Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.


Subject(s)
Antiviral Agents , Dengue Virus , Flavivirus , Proteolysis , Virus Internalization , Humans , Proteolysis/drug effects , Animals , Antiviral Agents/pharmacology , Flavivirus/drug effects , Flavivirus/genetics , Flavivirus/metabolism , Virus Internalization/drug effects , Dengue Virus/drug effects , Dengue Virus/physiology , Dengue Virus/genetics , Culicidae/virology , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/metabolism , Cell Line
13.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Article in English | MEDLINE | ID: mdl-38617528

ABSTRACT

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Subject(s)
Interleukin-10 , Myocardial Infarction , Adult , Humans , Interleukin-10/genetics , Optogenetics , Myocardial Infarction/therapy , Vagus Nerve , Myocytes, Cardiac
14.
Gen Psychiatr ; 37(2): e101173, 2024.
Article in English | MEDLINE | ID: mdl-38562406

ABSTRACT

Background: Postoperative sleep disturbance (PSD) is a common and serious postoperative complication and is associated with poor postoperative outcomes. Aims: This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on PSD in older patients undergoing lower limb major arthroplasty. Methods: In this prospective, double-blind, pilot, randomised, sham-controlled trial, patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS (a-tDCS) or sham tDCS (s-tDCS). The primary outcomes were the objective sleep measures on postoperative nights (N) 1 and N2. Results: 116 inpatients were assessed for eligibility, and a total of 92 patients were enrolled; 47 received a-tDCS and 45 received s-tDCS. tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups; the respective comparisons were as follows: the promotion of rapid eye movement (REM) sleep time on N1 (64.5 (33.5-105.5) vs 19.0 (0.0, 45.0) min, F=20.10, p<0.001) and N2 (75.0 (36.0-120.8) vs 30.0 (1.3-59.3) min, F=12.55, p<0.001); the total sleep time on N1 (506.0 (408.0-561.0) vs 392.0 (243.0-483.5) min, F=14.13, p<0.001) and N2 (488.5 (455.5-548.5) vs 346.0 (286.5-517.5) min, F=7.36, p=0.007); the deep sleep time on N1 (130.0 (103.3-177.0) vs 42.5 (9.8-100.8) min, F=24.4, p<0.001) and N2 (103.5 (46.0-154.8) vs 57.5 (23.3-106.5) min, F=8.4, p=0.004); and the percentages of light sleep and REM sleep on N1 and N2 (p<0.05 for each). The postoperative depression and anxiety scores did not differ significantly between the two groups. No significant adverse events were reported. Conclusion: In older patients undergoing lower limb major arthroplasty, a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures. However, this benefit was temporary and was not maintained over time.

15.
Article in English | MEDLINE | ID: mdl-38593404

ABSTRACT

The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.

16.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38635271

ABSTRACT

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Subject(s)
Colorectal Neoplasms , Emergence Delirium , Frailty , Laparoscopy , Transcranial Direct Current Stimulation , Female , Humans , Male , Middle Aged , Anxiety , Fatigue , Pain , Aged
17.
Behav Brain Res ; 466: 114974, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38554850

ABSTRACT

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Subject(s)
CA1 Region, Hippocampal , Dendrites , Diterpenes, Kaurane , Long-Term Potentiation , Animals , Female , Male , CA1 Region, Hippocampal/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Mice , Dendrites/drug effects , Memory/drug effects , Sex Factors , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Maze Learning/drug effects , Maze Learning/physiology
18.
Anesthesiology ; 140(5): 1052-1053, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38427818
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167065, 2024 06.
Article in English | MEDLINE | ID: mdl-38342419

ABSTRACT

Transcription factor EB (TFEB), a master lysosomal biogenesis and autophagy regulator, is crucial for cellular homeostasis, and its abnormality is related to diverse inflammatory diseases. Genetic variations in autophagic genes are associated with susceptibility to inflammatory bowel disease (IBD); however, little is known about the role and mechanism of TFEB in disease pathogenesis. In this study, we found that the genetic deletion of TFEB in mouse intestinal epithelial cells (IEC) caused intestinal barrier dysfunction, leading to increased susceptibility to experimental colitis. Mechanistically, TFEB functionally protected IEC in part through peroxisome proliferator-activated receptor gamma coactivator 1alpha (TFEB-PGC1α axis) induction, which consequently suppressed reactive oxygen species. TFEB can directly regulate PGC-1α transcription to control antioxidation level. Notably, TFEB expression is impaired and downregulated in the colon tissues of IBD patients. Collectively, our results indicate that intestinal TFEB participates in oxidative stress regulation and attenuates IBD progression.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Homeostasis , Inflammatory Bowel Diseases , Intestinal Mucosa , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Animals , Reactive Oxygen Species/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/genetics , Mice , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Oxidative Stress , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice, Inbred C57BL , Mice, Knockout , Male , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Colitis/genetics
20.
JMIR Aging ; 7: e51264, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38298029

ABSTRACT

Background: The 3-Minute Diagnostic Interview for Confusion Assessment Method-Defined Delirium (3D-CAM) is an instrument specially developed for the assessment of delirium in general wards, with high reported sensitivity and specificity. However, the use of the 3D-CAM by bedside nurses in routine practice showed relatively poor usability, with multiple human errors during assessment. Objective: This study aimed to develop a mobile app-based delirium assessment tool based on the 3D-CAM and evaluate its usability among older patients by bedside nurses. Methods: The Delirium Assessment Tool With Decision Support Based on the 3D-CAM (3D-DST) was developed to address existing issues of the 3D-CAM and optimize the assessment process. Following a randomized crossover design, questionnaires were used to evaluate the usability of the 3D-DST among older adults by bedside nurses. Meanwhile, the performances of both the 3D-DST and the 3D-CAM paper version, including the assessment completion rate, time required for completing the assessment, and the number of human errors made by nurses during assessment, were recorded, and their differences were compared. Results: The 3D-DST included 3 assessment modules, 9 evaluation interfaces, and 16 results interfaces, with built-in reminders to guide nurses in completing the delirium assessment. In the usability testing, a total of 432 delirium assessments (216 pairs) on 148 older adults were performed by 72 bedside nurses with the 3D-CAM paper version and the 3D-DST. Compared to the 3D-CAM paper version, the mean usability score was significantly higher when using the 3D-DST (4.35 vs 3.40; P<.001). The median scores of the 6 domains of the satisfactory evaluation questionnaire for nurses using the 3D-CAM paper version and the 3D-DST were above 2.83 and 4.33 points, respectively (P<.001). The average time for completing the assessment reduced by 2.1 minutes (4.4 vs 2.3 min; P<.001) when the 3D-DST was used. Conclusions: This study demonstrated that the 3D-DST significantly improved the efficiency of delirium assessment and was considered highly acceptable by bedside nurses.


Subject(s)
Decision Support Systems, Clinical , Delirium , Mobile Applications , Humans , Aged , Delirium/diagnosis , Cross-Over Studies , User-Centered Design , User-Computer Interface , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL