Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552609

ABSTRACT

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Subject(s)
Neoplasms , Humans , Carcinogenesis , Microbiota , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Obesity/complications , Quality of Life
2.
Cancer Discov ; 14(1): 36-48, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38047596

ABSTRACT

Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE: Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Epigenomics , Precision Medicine , Tumor Microenvironment/genetics
3.
Cancer Cell ; 41(3): 573-580, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917953

ABSTRACT

The mechanisms underlying the multistep process of tumorigenesis can be distilled into a logical framework involving the acquisition of functional capabilities, the so-called hallmarks of cancer, which are collectively envisaged to be necessary for malignancy. These capabilities, embodied both in transformed cancer cells as well as in the heterotypic accessory cells that together constitute the tumor microenvironment (TME), are conveyed by certain abnormal characteristics of the cancerous phenotype. This perspective discusses the link between the nervous system and the induction of hallmark capabilities, revealing neurons and neuronal projections (axons) as hallmark-inducing constituents of the TME. We also discuss the autocrine and paracrine neuronal regulatory circuits aberrantly activated in cancer cells that may constitute a distinctive "enabling" characteristic contributing to the manifestation of hallmark functions and consequent cancer pathogenesis.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Carcinogenesis , Neurons/pathology
4.
Immunity ; 56(1): 162-179.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630914

ABSTRACT

Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1+ T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8+ T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1+ stem-like T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Macrophages , Neoplasms , Animals , Mice , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Immunotherapy/methods , Macrophages/immunology , Macrophages/metabolism , Neoplasms/therapy , Tumor Microenvironment , Antibodies, Bispecific/immunology , Interleukin-2 , Programmed Cell Death 1 Receptor/immunology
5.
Science ; 378(6621): eabl7207, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36395212

ABSTRACT

Many human cancers manifest the capability to circumvent attack by the adaptive immune system. In this work, we identified a component of immune evasion that involves frequent up-regulation of fragile X mental retardation protein (FMRP) in solid tumors. FMRP represses immune attack, as revealed by cancer cells engineered to lack its expression. FMRP-deficient tumors were infiltrated by activated T cells that impaired tumor growth and enhanced survival in mice. Mechanistically, FMRP's immunosuppression was multifactorial, involving repression of the chemoattractant C-C motif chemokine ligand 7 (CCL7) concomitant with up-regulation of three immunomodulators-interleukin-33 (IL-33), tumor-secreted protein S (PROS1), and extracellular vesicles. Gene signatures associate FMRP's cancer network with poor prognosis and response to therapy in cancer patients. Collectively, FMRP is implicated as a regulator that orchestrates a multifaceted barrier to antitumor immune responses.


Subject(s)
Fragile X Mental Retardation Protein , Immune Evasion , Immune Tolerance , Neoplasms , Animals , Humans , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Neoplasms/immunology , Chemokine CCL7/metabolism , Interleukin-33 , Protein S/metabolism
6.
Cancer Cell ; 40(10): 1111-1127.e9, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36113478

ABSTRACT

Glioblastoma (GBM) is poorly responsive to therapy and invariably lethal. One conceivable strategy to circumvent this intractability is to co-target distinctive mechanistic components of the disease, aiming to concomitantly disrupt multiple capabilities required for tumor progression and therapeutic resistance. We assessed this concept by combining vascular endothelial growth factor (VEGF) pathway inhibitors that remodel the tumor vasculature with the tricyclic antidepressant imipramine, which enhances autophagy in GBM cancer cells and unexpectedly reprograms immunosuppressive tumor-associated macrophages via inhibition of histamine receptor signaling to become immunostimulatory. While neither drug is efficacious as monotherapy, the combination of imipramine with VEGF pathway inhibitors orchestrates the infiltration and activation of CD8 and CD4 T cells, producing significant therapeutic benefit in several GBM mouse models. Inclusion up front of immune-checkpoint blockade with anti-programmed death-ligand 1 (PD-L1) in eventually relapsing tumors markedly extends survival benefit. The results illustrate the potential of mechanism-guided therapeutic co-targeting of disparate biological vulnerabilities in the tumor microenvironment.


Subject(s)
Glioblastoma , Animals , Antidepressive Agents, Tricyclic/metabolism , Antidepressive Agents, Tricyclic/therapeutic use , Autophagy , B7-H1 Antigen/metabolism , Glioblastoma/pathology , Imipramine/metabolism , Imipramine/therapeutic use , Immune Checkpoint Inhibitors , Immunotherapy , Macrophages/metabolism , Mice , Neoplasm Recurrence, Local/drug therapy , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism
7.
Nature ; 610(7930): 161-172, 2022 10.
Article in English | MEDLINE | ID: mdl-36171284

ABSTRACT

Expansion and differentiation of antigen-experienced PD-1+TCF-1+ stem-like CD8+ T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade1-4. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8+ T cells similar to those generated in an acute infection5. IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor ß- and γ-chain (IL-2Rßγ)-biased agonists are currently being developed6-10. Here we show that IL-2Rßγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rßγ on the same cell recovers the ability to differentiate stem-like CD8+ T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis-targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, Interleukin-2 , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antibodies, Blocking/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Infections/drug therapy , Infections/immunology , Interleukin-2/immunology , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-2 Receptor alpha Subunit/agonists , Neoplasms/drug therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Interleukin-2/agonists
8.
Cancer Discov ; 12(1): 31-46, 2022 01.
Article in English | MEDLINE | ID: mdl-35022204

ABSTRACT

The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.


Subject(s)
Epigenomics , Neoplasms , Tumor Microenvironment , Humans
9.
Mol Oncol ; 15(10): 2507-2543, 2021 10.
Article in English | MEDLINE | ID: mdl-34515408

ABSTRACT

Key stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures - namely translational research, clinical/prevention trials and outcomes research - were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost.


Subject(s)
Neoplasms , Quality of Life , Europe/epidemiology , Humans , Neoplasms/epidemiology , Neoplasms/prevention & control , Precision Medicine , Translational Research, Biomedical
10.
Cancer Discov ; 11(10): 2638-2657, 2021 10.
Article in English | MEDLINE | ID: mdl-33910926

ABSTRACT

Pancreatic neuroendocrine tumors (PanNET) comprise two molecular subtypes, relatively benign islet tumors (IT) and invasive, metastasis-like primary (MLP) tumors. Until now, the origin of aggressive MLP tumors has been obscure. Herein, using multi-omics approaches, we revealed that MLP tumors arise from IT via dedifferentiation following a reverse trajectory along the developmental pathway of islet ß cells, which results in the acquisition of a progenitor-like molecular phenotype. Functionally, the miR-181cd cluster induces the IT-to-MLP transition by suppressing expression of the Meis2 transcription factor, leading to upregulation of a developmental transcription factor, Hmgb3. Notably, the IT-to-MLP transition constitutes a distinct step of tumorigenesis and is separable from the classic proliferation-associated hallmark, temporally preceding accelerated proliferation of cancer cells. Furthermore, patients with PanNET with elevated HMGB3 expression and an MLP transcriptional signature are associated with higher-grade tumors and worse survival. Overall, our results unveil a new mechanism that modulates cancer cell plasticity to enable malignant progression. SIGNIFICANCE: Dedifferentiation has long been observed as a histopathologic characteristic of many cancers, albeit inseparable from concurrent increases in cell proliferation. Herein, we demonstrate that dedifferentiation is a mechanistically and temporally separable step in the multistage tumorigenesis of pancreatic islet cells, retracing the developmental lineage of islet ß cells.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Regulation , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Animals , Disease Models, Animal , Mice , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology
11.
Mol Oncol ; 14(8): 1589-1615, 2020 08.
Article in English | MEDLINE | ID: mdl-32749074

ABSTRACT

A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research-care-prevention continuum has the potential to achieve in 2030 a 10-year cancer-specific survival for 75% of patients diagnosed in European Union (EU) member states with a well-developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high-quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science-driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC-like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long-term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans-border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence-based advice.


Subject(s)
Neoplasms/therapy , Cancer Survivors , Clinical Trials as Topic , Europe , Humans , Neoplasms/prevention & control , Neoplasms/psychology , Neoplasms/rehabilitation , Organizational Innovation , Palliative Care , Patient Participation , Specialization , Translational Research, Biomedical
12.
Cell ; 181(2): 219-222, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32302564

ABSTRACT

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Subject(s)
Neoplasms/metabolism , Nervous System/metabolism , Humans , Neurosciences
13.
Cancer Immunol Res ; 8(1): 131-145, 2020 01.
Article in English | MEDLINE | ID: mdl-31771984

ABSTRACT

Cancers induced by human papillomaviruses (HPV) should be responsive to immunotherapy by virtue of expressing the immunogenic oncoproteins E6/E7. However, advanced forms of cervical cancer, driven by HPV, are poorly responsive to immune response-enhancing treatments involving therapeutic vaccination against these viral neoantigens. Leveraging a transgenic mouse model of HPV-derived cancers, K14HPV16/H2b, we demonstrated that a potent nanoparticle-based E7 vaccine, but not a conventional "liquid" vaccine, induced E7 tumor antigen-specific CD8+ T cells in cervical tumor-bearing mice. Vaccination alone or in combination with anti-PD-1/anti-CTLA4 did not elicit tumor regression nor increase CD8+ T cells in the tumor microenvironment (TME), suggesting the presence of immune-suppressive barriers. Patients with cervical cancer have poor dendritic cell functions, have weak cytotoxic lymphocyte responses, and demonstrate an accumulation of myeloid cells in the periphery. Here, we illustrated that myeloid cells in K14HPV16/H2b mice possess potent immunosuppressive activity toward antigen-presenting cells and CD8+ T cells, dampening antitumor immunity. These immune-inhibitory effects inhibited synergistic effects of combining our oncoprotein vaccine with immune checkpoint-blocking antibodies. Our data highlighted a link between HPV-induced cancers, systemic amplification of myeloid cells, and the detrimental effects of myeloid cells on CD8+ T-cell activation and recruitment into the TME. These results established immunosuppressive myeloid cells in lymphoid organs as an HPV+ cancer-induced means of circumventing tumor immunity that will require targeted abrogation to enable the induction of efficacious antitumor immune responses.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Myeloid Cells/immunology , Papillomaviridae/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/immunology , Animals , CTLA-4 Antigen/antagonists & inhibitors , Disease Models, Animal , Drug Synergism , Female , Humans , Immunosuppression Therapy , Immunotherapy/methods , Mice , Myeloid Cells/drug effects , Nanoparticles/administration & dosage , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/drug therapy , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology
15.
Proc Natl Acad Sci U S A ; 116(48): 24184-24195, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31704767

ABSTRACT

MicroRNA-mediated gene regulation has been implicated in various diseases, including cancer. This study examined the role of microRNAs (miRNAs) during tumorigenesis and malignant progression of pancreatic neuroendocrine tumors (PanNETs) in a genetically engineered mouse model. Previously, a set of miRNAs was observed to be specifically up-regulated in a highly invasive and metastatic subtype of mouse and human PanNET. Using functional assays, we now implicate different miRNAs in distinct phenotypes: miR-137 stimulates tumor growth and local invasion, whereas the miR-23b cluster enables metastasis. An algorithm, Bio-miRTa, has been developed to facilitate the identification of biologically relevant miRNA target genes and applied to these miRNAs. We show that a top-ranked miR-137 candidate gene, Sorl1, has a tumor suppressor function in primary PanNETs. Among the top targets for the miR-23b cluster, Acvr1c/ALK7 has recently been described to be a metastasis suppressor, and we establish herein that it is down-regulated by the miR-23b cluster, which is crucial for its prometastatic activity. Two other miR-23b targets, Robo2 and P2ry1, also have demonstrable antimetastatic effects. Finally, we have used the Bio-miRTa algorithm in reverse to identify candidate miRNAs that might regulate activin B, the principal ligand for ALK7, identifying thereby a third family of miRNAs-miRNA-130/301-that is congruently up-regulated concomitant with down-regulation of activin B during tumorigenesis, suggestive of functional involvement in evasion of the proapoptotic barrier. Thus, dynamic up-regulation of miRNAs during multistep tumorigenesis and malignant progression serves to down-regulate distinctive suppressor mechanisms of tumor growth, invasion, and metastasis.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Activin Receptors, Type I/genetics , Activins/genetics , Algorithms , Animals , Cell Line, Tumor , Computational Biology/methods , Doxycycline/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , LDL-Receptor Related Proteins/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Membrane Transport Proteins/genetics , Mice , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/mortality , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Prognosis , Receptors, LDL/genetics , Xenograft Model Antitumor Assays
16.
Nature ; 573(7775): 526-531, 2019 09.
Article in English | MEDLINE | ID: mdl-31534217

ABSTRACT

Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is a common and disruptive form of cancer and is prevalent in the aggressive basal-like subtype, but is also found at varying frequencies in all cancer subtypes. Previous studies revealed parameters of breast cancer metastasis to the brain, but its preference for this site remains an enigma. Here we show that B2BM cells co-opt a neuronal signalling pathway that was recently implicated in invasive tumour growth, involving activation by glutamate ligands of N-methyl-D-aspartate receptors (NMDARs), which is key in model systems for metastatic colonization of the brain and is associated with poor prognosis. Whereas NMDAR activation is autocrine in some primary tumour types, human and mouse B2BM cells express receptors but secrete insufficient glutamate to induce signalling, which is instead achieved by the formation of pseudo-tripartite synapses between cancer cells and glutamatergic neurons, presenting a rationale for brain metastasis.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/secondary , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/physiology , Synapses/physiology , Animals , Brain Neoplasms/ultrastructure , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neoplasm Metastasis , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/ultrastructure , Synaptic Transmission
17.
Dev Cell ; 49(3): 409-424.e6, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31063757

ABSTRACT

Herein, we report that the TGFß superfamily receptor ALK7 is a suppressor of tumorigenesis and metastasis, as revealed by functional studies in mouse models of pancreatic neuroendocrine and luminal breast cancer, complemented by experimental metastasis assays. Activation in neoplastic cells of the ALK7 signaling pathway by its principal ligand activin B induces apoptosis. During tumorigenesis, cancer cells use two different approaches to evade this barrier, either downregulating activin B and/or downregulating ALK7. Suppressing ALK7 expression additionally contributes to the capability for metastatic seeding. ALK7 is associated with shorter relapse-free survival of various human cancers and distant-metastasis-free survival of breast cancer patients. This study introduces mechanistic insights into primary and metastatic tumor development, in the form of a protective barrier that triggers apoptosis in cells that are not "authorized" to proliferate within a particular tissue, by virtue of those cells expressing ALK7 in a tissue microenvironment bathed in its ligand.


Subject(s)
Activin Receptors, Type I/metabolism , Activins/metabolism , Neoplasms/metabolism , Animals , Apoptosis/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogenesis , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Female , Heterografts , Homeostasis , Humans , Male , Mice , Mice, Inbred A , Mice, Inbred C57BL , Mice, SCID , Neoplasm Metastasis , Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Signal Transduction , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
18.
J Immunother Cancer ; 7(1): 122, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31060612

ABSTRACT

High-risk human papillomavirus (HPV) are responsible for genital and oral cancers associated with the expression of the E6/E7 HPV oncogenes. Therapeutic vaccines targeting those oncogenes can only partially control tumor progression, highlighting the necessity to investigate different treatment strategies. Using the genital orthotopic HPV16 TC-1 model, herein we sequentially investigated in progressively more stringent settings the effects of systemic administration of carboplatin/paclitaxel (C + P) chemotherapy combined with HPV16-E7 synthetic long peptide (E7LP) vaccination, followed by intravaginal immunostimulation with the synthetic toll-like-receptor-9 agonist CpG. Our data show that systemic delivery of C + P prior to E7LP vaccination significantly increased mice survival. This survival benefit was associated with both reduced genital tumor growth at the time of vaccination, and a decreased infiltration of Ly6G myeloid cells and tumor-associated macrophages. Adding intravaginal CpG, which results in increased E7-specific CD8 T cells locally, to E7LP vaccination and the chemotherapy formed a tri-therapy, which significantly increased mice survival as compared to any of the dual treatments. When the tri-therapy was further refined by using a recently optimized nanoparticle-conjugated E7LP vaccine, even larger end-stage genital-TC-1 tumors responded, with 90% of mice showing a survival benefit as compared to 30% of mice with the tri-therapy involving the traditional E7LP 'liquid' vaccine. C + P is commonly used to treat cervical cancer patients and its combination with E7/E6 vaccination is currently being tested in a phase I/II trial (NCT02128126). Our data suggests that new vaccine formulations combined with local immunostimulation and standard-of-care chemotherapy have promise to further benefit patients with HPV-associated cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cancer Vaccines/administration & dosage , Genital Neoplasms, Female/therapy , Immunotherapy/methods , Oligodeoxyribonucleotides/administration & dosage , Papillomavirus Infections/therapy , Administration, Intravaginal , Animals , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Combined Modality Therapy/methods , Disease Models, Animal , Female , Genital Neoplasms, Female/immunology , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/virology , Human papillomavirus 16/immunology , Human papillomavirus 16/isolation & purification , Human papillomavirus 16/pathogenicity , Humans , Injections, Intraperitoneal , Injections, Subcutaneous , Mice , Paclitaxel/administration & dosage , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Toll-Like Receptor 9/agonists , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vagina/immunology , Vagina/pathology , Vagina/virology
19.
Cell Rep ; 25(4): 1066-1080.e8, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30355485

ABSTRACT

The discovery of cancer-associated alterations has primarily focused on genetic variants. Nonetheless, altered epigenomes contribute to deregulate transcription and promote oncogenic pathways. Here, we designed an algorithmic approach (RESET) to identify aberrant DNA methylation and associated cis-transcriptional changes across >6,000 human tumors. Tumors exhibiting mutations of chromatin remodeling factors and Wnt signaling displayed DNA methylation instability, characterized by numerous hyper- and hypo-methylated loci. Most silenced and enhanced genes coalesced in specific pathways including apoptosis, DNA repair, and cell metabolism. Cancer-germline antigens (CG) were frequently epigenomically enhanced and their expression correlated with response to anti-PD-1, but not anti-CTLA4, in skin melanoma. Finally, we demonstrated the potential of our approach to explore DNA methylation changes in pediatric tumors, which frequently lack genetic drivers and exhibit epigenomic modifications. Our results provide a pan-cancer map of aberrant DNA methylation to inform functional and therapeutic studies.


Subject(s)
DNA Methylation/genetics , Neoplasms/genetics , Cell Line, Tumor , Child , Epigenesis, Genetic , Gene Silencing , Humans
20.
Cancer Immunol Res ; 6(11): 1301-1313, 2018 11.
Article in English | MEDLINE | ID: mdl-30131378

ABSTRACT

Treatment of patients bearing human papillomavirus (HPV)-related cancers with synthetic long-peptide (SLP) therapeutic vaccines has shown promising results in clinical trials against premalignant lesions, whereas responses against later stage carcinomas have remained elusive. We show that conjugation of a well-documented HPV-E7 SLP to ultra-small polymeric nanoparticles (NP) enhances the antitumor efficacy of therapeutic vaccination in different mouse models of HPV+ cancers. Immunization of TC-1 tumor-bearing mice with a single dose of NP-conjugated E7LP (NP-E7LP) generated a larger pool of E7-specific CD8+ T cells with increased effector functions than unconjugated free E7LP. At the tumor site, NP-E7LP prompted a robust infiltration of CD8+ T cells that was not accompanied by concomitant accumulation of regulatory T cells (Tregs), resulting in a higher CD8+ T-cell to Treg ratio. Consequently, the amplified immune response elicited by the NP-E7LP formulation led to increased regression of large, well-established tumors, resulting in a significant percentage of complete responses that were not achievable by immunizing with the non-NP-conjugated long-peptide. The partial responses were characterized by distinct phases of regression, stable disease, and relapse to progressive growth, establishing a platform to investigate adaptive resistance mechanisms. The efficacy of NP-E7LP could be further improved by therapeutic activation of the costimulatory receptor 4-1BB. This NP-E7LP formulation illustrates a "solid-phase" antigen delivery strategy that is more effective than a conventional free-peptide ("liquid") vaccine, further highlighting the potential of using such formulations for therapeutic vaccination against solid tumors. Cancer Immunol Res; 6(11); 1301-13. ©2018 AACR.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Nanoparticles/chemistry , Papillomavirus E7 Proteins/chemistry , Animals , Antibodies/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/chemistry , Female , Lung Neoplasms/secondary , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Recurrence, Local , Neoplasms, Experimental/immunology , Neoplasms, Experimental/mortality , Neoplasms, Experimental/therapy , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/pharmacology , T-Lymphocytes, Regulatory/immunology , Treatment Outcome , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Vaginal Neoplasms/immunology , Vaginal Neoplasms/pathology , Vaginal Neoplasms/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...