Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Article in English | MEDLINE | ID: mdl-32320389

ABSTRACT

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.


Subject(s)
Behavior, Animal , Culicidae/physiology , Malaria/transmission , Mosquito Vectors , Algorithms , Animals , Computational Biology , Computer Simulation , Disease Vectors , Ecology , Ecosystem , Feeding Behavior , Female , Humans , Male , Models, Theoretical , Monte Carlo Method , Oviposition , Probability
2.
Article in English | MEDLINE | ID: mdl-31547208

ABSTRACT

The application of agricultural pesticides in Africa can have negative effects on human health and the environment. The aim of this study was to identify African environments that are vulnerable to the accumulation of pesticides by mapping geospatial processes affecting pesticide fate. The study modelled processes associated with the environmental fate of agricultural pesticides using publicly available geospatial datasets. Key geospatial processes affecting the environmental fate of agricultural pesticides were selected after a review of pesticide fate models and maps for leaching, surface runoff, sedimentation, soil storage and filtering capacity, and volatilization were created. The potential and limitations of these maps are discussed. We then compiled a database of studies that measured pesticide residues in Africa. The database contains 10,076 observations, but only a limited number of observations remained when a standard dataset for one compound was extracted for validation. Despite the need for more in-situ data on pesticide residues and application, this study provides a first spatial overview of key processes affecting pesticide fate that can be used to identify areas potentially vulnerable to pesticide accumulation.


Subject(s)
Models, Theoretical , Pesticide Residues , Soil Pollutants , Spatial Analysis , Africa , Agriculture , Pesticides , Soil , Volatilization , Water Cycle
3.
Malar J ; 6: 98, 2007 Jul 30.
Article in English | MEDLINE | ID: mdl-17663757

ABSTRACT

A series of models of malaria-mosquito-human interactions using the Lumped Age-Class technique of Gurney & Nisbet are developed. The models explicitly include sub-adult mosquito dynamics and assume that population regulation occurs at the larval stage. A challenge for modelling mosquito dynamics in continuous time is that the insect has discrete life-history stages (egg, larva, pupa & adult), the sub-adult stages of relatively fixed duration, which are subject to very different demographic rates. The Lumped Age-Class technique provides a natural way to treat this type of population structure. The resulting model, phrased as a system of delay-differential equations, is only slightly harder to analyse than traditional ordinary differential equations and much easier than the alternative partial differential equation approach. The Lumped Age-Class technique also allows the natural treatment of the relatively fixed time delay between the mosquito ingesting Plasmodium and it becoming infective. Three models are developed to illustrate the application of this approach: one including just the mosquito dynamics, the second including Plasmodium but no human dynamics, and the third including the interaction of the malaria pathogen and the human population (though only in a simple classical Ross-Macdonald manner). A range of epidemiological quantities used in studying malaria such as the vectorial capacity, the entomological inoculation rate and the basic reproductive number (R0) are derived, and examples given of the analysis and simulation of model dynamics. Assumptions and extensions are discussed. It is suggested that this modelling framework may be a natural and useful tool for exploring a variety of issues in malaria-vector epidemiology, especially in circumstances where a dynamic representation of mosquito recruitment is required.


Subject(s)
Culicidae/parasitology , Insect Vectors/parasitology , Malaria/epidemiology , Models, Biological , Plasmodium/physiology , Animals , Culicidae/physiology , Host-Parasite Interactions , Humans , Larva/parasitology , Life Cycle Stages , Malaria/parasitology , Mosquito Control , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL