Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Magn Reson Med ; 85(6): 3447-3462, 2021 06.
Article in English | MEDLINE | ID: mdl-33483979

ABSTRACT

PURPOSE: To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. METHODS: In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin-echo, EPI, gradient-echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric. RESULTS: With the exception of gradient-echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF-induced heating dominates the turbo spin-echo sequence, whereas gradient-induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature-increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits. CONCLUSION: The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole-body specific absorption rate may not be sufficient to ensure patients' safety.


Subject(s)
Hip Prosthesis , Heating , Hip Joint , Hot Temperature , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Prostheses and Implants , Radio Waves
2.
Bioelectromagnetics ; 34(1): 81-4, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22532229

ABSTRACT

We estimate that there are about 100,000 workers from different disciplines, such as radiographers, nurses, anesthetists, technicians, engineers, etc., who can be exposed to substantial electromagnetic fields (compared to normal background levels) around magnetic resonance imaging (MRI) scanners. There is a need for well-designed epidemiological studies of MRI workers but since the exposure from MRI equipment is a very complex mixture of static magnetic fields, switched gradient magnetic fields, and radiofrequency electromagnetic fields (RF EMF), it is necessary to discuss how to assess the exposure in epidemiological studies. As an alternative to the use of job title as a proxy of exposure, we propose an exposure categorization for the different professions working with MRI equipment. Specifically, we propose defining exposure in three categories, depending on whether people are exposed to only the static field, to the static plus switched gradient fields or to the static plus switched gradient plus RF fields, as a basis for exposure assessment in epidemiological studies.


Subject(s)
Epidemiologic Studies , Magnetic Resonance Imaging/instrumentation , Occupational Exposure/classification , Animals , Humans , Magnetic Fields/adverse effects , Occupational Exposure/analysis , Radiation Dosage , Radio Waves/adverse effects
3.
Magn Reson Med ; 68(3): 960-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22161788

ABSTRACT

When patients with metallic prosthetic implants undergo an MR procedure, the interaction between the RF field and the prosthetic device may lead to an increase in specific absorption rate (SAR) in tissues surrounding the prosthesis. In this work, the distribution of SAR(10g) around bilateral CoCrMo alloy hip prostheses in situ in anatomically realistic voxel models of an adult male and female due to RF fields from a generic birdcage coil driven at 64 or 128 MHz are predicted using a time-domain finite integration technique. Results indicate that the spatial distribution and maximum values of SAR(10g) are dependent on body model, frequency, and the position of the coil relative to the body. Enhancement of SAR(10g) close to the extremities of a prosthesis is predicted. Values of SAR(10g) close to the prostheses are compliant with recommended limits if the prostheses are located outside the coil. However, caution is required when the prostheses are within the coil since the predicted SAR(10g) close to an extremity of a prosthesis exceeds recommended limits when the whole body averaged SAR is 2 W kg(-1) . Compliance with recommended limits is likely to require a reduction in the time averaged input power.


Subject(s)
Hip Joint/physiopathology , Hip Prosthesis , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Models, Biological , Vitallium , Adult , Computer Simulation , Hip Joint/surgery , Humans , Image Enhancement/methods , Magnetic Fields , Reproducibility of Results , Sensitivity and Specificity
4.
J Magn Reson Imaging ; 26(5): 1286-95, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17969144

ABSTRACT

PURPOSE: To simulate exposure (e.g., during interventional procedures) of a worker close to an operating MR scanner by calculating electric fields and current density within an anatomically realistic body model due to a z-gradient coil and to compare results with safety guidelines and European Directive 2004/40/EC. MATERIALS AND METHODS: Electric field and current density in an adult male model located at three positions within the range 0.19-0.44 m from the end of a generic z-gradient coil were calculated using the time-domain finite integration technique (FIT). Frequency scaling was used in which quasistatic conditions were assumed and results obtained at 1 MHz (assuming tissue conductivity values at 1 kHz) were scaled to 1 kHz. RESULTS: Current density (averaged over 1 cm(2)) in central nervous system (CNS) tissues up to 20.6 mA m(-2) and electric fields (averaged over 5 mm) up to 4.1 V m(-1) were predicted for a gradient of 10 mT m(-1) and slew rate of 10 T m(-1) second(-1). CONCLUSION: Compliance with 2004/40/EC, and with basic restriction values of Institute of Electrical and Electronics Engineers (IEEE) C95.6-2002, was predicted only at impracticably low gradients/slew rates in the ranges 4.9-9.1 mT m(-1)/4.9-9.1 T m(-1) second(-1) and 5-21 mT m(-1)/5-21 T m(-1) second(-1), respectively.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging/instrumentation , Models, Biological , Occupational Exposure/analysis , Whole-Body Counting/methods , Body Burden , Computer Simulation , Humans , Medical Staff , Radiation Dosage , Radiation Monitoring/methods , Relative Biological Effectiveness , Transducers
5.
J Magn Reson Imaging ; 25(3): 548-56, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17279503

ABSTRACT

PURPOSE: To integrate a high intensity focused ultrasound (HIFU) transducer with an MR receiver coil for endocavitary MR-guided thermal ablation of localized pelvic lesions. MATERIALS AND METHODS: A hollow semicylindrical probe (diameter 3.2 cm) with a rectangular upper surface (7.2 cm x 3.2 cm) was designed to house a HIFU transducer and enable acoustic contact with an intraluminal wall. The probe was distally rounded to ease endocavitary insertion and was proximally tapered to a 1.5-cm diameter cylindrical handle through which the irrigation tubes (for transducer cooling) and electrical connections were passed. MR compatibility of piezoceramic and piezocomposite transducers was assessed using gradient-echo (GRE) sequences. The radiofrequency (RF) tuning of identical 6.5 cm x 2.5 cm rectangular receiver coils on the upper surface of the probe was adjusted to compensate for the presence of the conductive components of the HIFU transducers. A T1-weighted (T1-W) sliding window dual-echo GRE sequence monitored phase changes in the focal zone of each transducer. High-intensity (2400 W/cm(-2)), short duration (<1.5 seconds) exposures produced subtherapeutic temperature rises. RESULTS: For T1-W images, signal-to-noise ratio (SNR) improved by 40% as a result of quartering the conductive surface of the piezoceramic transducer. A piezocomposite transducer showed a further 28% improvement. SNRs for an endocavitary coil in the focal plane of the HIFU trans-ducer (4 cm from its face) were three times greater than from a phased body array coil. Local shimming improved uniformity of phase images. Phase changes were detected at subtherapeutic exposures. CONCLUSION: We combined a HIFU transducer with an MR receiver coil in an endocavitary probe. SNRs were improved by quartering the conductive surface of the piezoceramic. Further improvement was achieved with a piezocomposite transducer. A phase change was seen on MR images during both subtherapeutic and therapeutic HIFU exposures.


Subject(s)
Catheter Ablation/instrumentation , Liver , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Ultrasonic Therapy/instrumentation , Animals , Artifacts , Calibration , Catheter Ablation/standards , Cattle , Equipment Design/methods , Hot Temperature , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Temperature , Transducers , Ultrasonic Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL