Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 577: 112011, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37453692

ABSTRACT

The Anti-mullerian hormone (AMH), also known as Mullerian inhibiting substance (MIS), is a glycoprotein that belongs to transforming growth factor ß superfamily. The significance of AMH during gonadal differentiation is not clearly deciphered in reptiles. Hence, current study aims to know the onset of AMH secretion and its functional role in Mullerian duct regression gonadal differentiation in tropical lizard, Calotes versicolor which exhibits a novel Female-Male-Female-Male (FMFM) pattern of temperature-dependent sex determination (TSD). The Immunohistochemistry and qRT-PCR techniques were employed to analyze the gonadal expression profile of AMH during different stages of embryonic development. The eggs of the lizard were incubated at both male-producing temperature (MPT: 25.5 ± 0.5 °C) and female-producing temperatures (FPT: 31.5 ± 0.5 °C). The results reveal that the onset of AMH gene expression was observed as early as oviposition prior to the immunolocalization of AMH protein at early-TSP (Temperature-sensitive period). The substantial rise in the intensity of the immunoreaction of AMH protein in the cytoplasm confining to Sertoli cells of seminiferous cords at MPT with low level of expression at FPT during gonadal sex differentiation, specify sexually dimorphic expression of AMH protein. Further, with the onset of sexual differentiation, the developing testis immensely expresses AMH gene which is 7-fold greater than that of transcripts levels in female embryos; signifies its conserved role in Mullerian duct regression thereby promoting testis differentiation. The robust immunnoexpression of AMH protein during post-gonadal differentiation coincides with the onset of the regression of Mullerian duct point out a positive correlation between testis differentiation and Mullerian duct regression, thus facilitating testis differentiation pathway. Based on the immunoexpression pattern of AMH protein and transcript levels of AMH gene, it is inferred that AMH plays a significant role in Mullerian duct regression, favoring testis differentiation.


Subject(s)
Lizards , Peptide Hormones , Animals , Male , Female , Testis/metabolism , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/metabolism , Lizards/metabolism , Sex Differentiation/genetics , Cell Differentiation , Transforming Growth Factor beta/metabolism , Peptide Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...