Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Childs Nerv Syst ; 39(10): 2605-2611, 2023 10.
Article in English | MEDLINE | ID: mdl-37518061

ABSTRACT

Imaging has always been fundamental to neurosurgery, and its evolution over the last century has made a dramatic transformation in the ability of neurosurgeons to define pathology and preserve normal tissue during their operations. In the mid-70 s, the development of computerized cross-sectional imaging with CT scan and subsequently MRI have revolutionized the practice of neurosurgery. Later, further advances in computer technology and medical engineering have allowed the combination of many modalities to bring them into the operating theater. This evolution has allowed real-time intraoperative imaging, in the hope of helping neurosurgeons achieve accuracy, maximal safe resection, and the implementation of minimally invasive techniques in brain and spine pathologies. Augmented reality and robotic technologies are also being applied as useful intra-operative techniques that will improve surgical planning and outcomes in the future. In this article, we will review imaging modalities and provide our institutional perspective on how we have integrated them into our practice.


Subject(s)
Neurosurgery , Humans , Child , Neurosurgery/methods , Neurosurgical Procedures , Neurosurgeons , Brain/surgery , Magnetic Resonance Imaging
2.
J Neurosurg Pediatr ; : 1-14, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36883640

ABSTRACT

OBJECTIVE: The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS: Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS: A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS: SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.

3.
Childs Nerv Syst ; 39(9): 2307-2316, 2023 09.
Article in English | MEDLINE | ID: mdl-35831712

ABSTRACT

PURPOSE: Pineal region tumors (PRT) represent less than 1% of brain neoplasms. The rare and heterogeneous nature of these tumors is reflected in the variety of treatment modalities employed. METHODS: A single-center retrospective review of all pediatric patients with pineal region tumors between November 1996 and June 2021 was performed. Fifty-six cases of pineal tumors were reviewed for age and symptoms upon presentation, diagnostic methods, imaging characteristics, histological classification, treatment modalities, recurrence, and mortality rates. RESULTS: The average age at diagnosis was 11.3 years. The majority of patients were male (82.1%) and Caucasian (73.2%). The most common presenting symptoms were headache (n = 38, 67.9%) and visual problems (n = 34, 60.7%). Hydrocephalus was present in 49 patients (87.5%). Germinoma (n = 20, 35.7%) and non-germinomatous germ cell tumor (NGGCT) (n = 17, 30.4%) were the most common tumors. Chemotherapy was employed for 54 patients (96.4%), radiation for 49 (87.5%), and surgical resection for 14 (25.0%). The average duration of treatment was 5.9 months. Progression-free survival was 74.4% at 5 years and 72.0% at 10 years. Overall survival was 85.7% at 5 years and 77.1% at 10 years. CONCLUSION: Treatment of pineal region tumors must be targeted to each patient based on presentation, subtype, presence of hydrocephalus, and extent of disease. Upfront surgical resection is usually not indicated. As advances in oncological care proceed, treatment modalities may continue to improve in efficacy.


Subject(s)
Brain Neoplasms , Germinoma , Hydrocephalus , Pineal Gland , Pinealoma , Humans , Child , Male , Female , Pineal Gland/diagnostic imaging , Pinealoma/diagnostic imaging , Pinealoma/therapy , Germinoma/diagnostic imaging , Germinoma/therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Hydrocephalus/etiology
4.
J Neurosurg Pediatr ; 30(6): 602-608, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36115060

ABSTRACT

OBJECTIVE: Prior to 2019, the majority of patients at Children's Hospital Colorado were admitted to the pediatric intensive care unit (PICU) following Chiari malformation (CM) decompression surgery. This study sought to identify the safety and efficacy of postoperative general ward management for these patients. METHODS: After a retrospective baseline assessment of 150 patients, a quality improvement (QI) initiative was implemented, admitting medically noncomplex patients to the general ward postoperatively following CM decompression. Twenty-one medically noncomplex patients were treated during the QI intervention period. All patients were assessed for length of stay, narcotic use, time to ambulation, and postoperative complications. RESULTS: PICU admission rates postoperatively decreased from 92.6% to 9.5% after implementation of the QI initiative. The average hospital length of stay decreased from 3.4 to 2.6 days, total doses of narcotic administration decreased from 12.3 to 8.7, and time to ambulation decreased from 1.8 to 0.9 days. There were no major postoperative complications identified that were unsuitable for management on a conventional pediatric medical/surgical nursing unit. CONCLUSIONS: Medically noncomplex patients were safely admitted to the general ward postoperatively at Children's Hospital Colorado after decompression of CM. This approach afforded decreased length of stay, decreased narcotic use, and decreased time to ambulation, with no major postoperative complications.


Subject(s)
Arnold-Chiari Malformation , Decompression, Surgical , Child , Humans , Retrospective Studies , Decompression, Surgical/adverse effects , Patients' Rooms , Treatment Outcome , Arnold-Chiari Malformation/surgery , Arnold-Chiari Malformation/complications , Postoperative Complications/etiology , Postoperative Complications/surgery , Narcotics
6.
Neuro Oncol ; 24(2): 273-286, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34077540

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is a heterogeneous disease in which neoplastic cells and associated immune cells contribute to disease progression. We aimed to determine the influence of neoplastic and immune cell diversity on MB biology in patient samples and animal models. METHODS: To better characterize cellular heterogeneity in MB we used single-cell RNA sequencing, immunohistochemistry, and deconvolution of transcriptomic data to profile neoplastic and immune populations in patient samples and animal models across childhood MB subgroups. RESULTS: Neoplastic cells cluster primarily according to individual sample of origin which is influenced by chromosomal copy number variance. Harmony alignment reveals novel MB subgroup/subtype-associated subpopulations that recapitulate neurodevelopmental processes, including photoreceptor and glutamatergic neuron-like cells in molecular subgroups GP3 and GP4, and a specific nodule-associated neuronally differentiated subpopulation in the sonic hedgehog subgroup. We definitively chart the spectrum of MB immune cell infiltrates, which include subpopulations that recapitulate developmentally related neuron-pruning and antigen-presenting myeloid cells. MB cellular diversity matching human samples is mirrored in subgroup-specific mouse models of MB. CONCLUSIONS: These findings provide a clearer understanding of the diverse neoplastic and immune cell subpopulations that constitute the MB microenvironment.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Mice , Transcriptome , Tumor Microenvironment/genetics
7.
J Neurosurg Pediatr ; 28(5): 592-599, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479200

ABSTRACT

OBJECTIVE: Occult spinal dysraphism (OSD) is a common pediatric neurosurgical diagnosis rife with controversy surrounding both the screening of asymptomatic infants and the threshold to offer a prophylactic detethering operation. The authors sought to clarify international practice patterns with a survey of pediatric neurosurgeons. METHODS: A survey asked pediatric neurosurgeons whether they would perform imaging in patients with a variety of cutaneous stigmata associated with OSD and whether they would offer prophylactic detethering surgery for asymptomatic patients with a variety of imaging findings on the OSD spectrum. RESULTS: Completed surveys were received from 141 pediatric neurosurgeons. Broad consensus was demonstrated on the need for obtaining images in sample patients with more severe stigmata ranging from large lipoma with a skin appendage to focal dysplastic skin in the lumbar midline. Ninety percent of respondents would perform MRI for these patients. In contrast, for patients with a low-sacral dimple, flat hemangioma, and symmetric (Y-shaped) splaying of the intergluteal cleft, opinion on the need for imaging varied considerably (between 57% and 89% recommended imaging). Respondents differed on the type of imaging that they would perform, with 31% to 38% recommending ultrasound screening. The responses reflected less consensus on when to offer surgery to patients with simple spinal tethering (low-lying conus medullaris and fatty filum terminale). Both a lower level of the conus and increased thickness of the filum terminale affected decision-making. CONCLUSIONS: The results of this survey showed significant consensus on the recommendation for screening imaging in patients with more dramatic cutaneous stigmata, although these stigmata are the rarest. A significant variance in opinions was reflected in the recommendation for imaging of the most common cutaneous stigmata. Consensus was also lacking on which lesions deserve prophylactic detethering surgery. Significant equipoise exists for future study of screening imaging and of surgical decision-making in patients with asymptomatic OSD and associated cutaneous stigmata.


Subject(s)
Neural Tube Defects/diagnostic imaging , Neural Tube Defects/surgery , Disease Management , Female , Humans , Lumbosacral Region/surgery , Male , Neural Tube Defects/complications , Neurosurgical Procedures , Pediatrics , Surveys and Questionnaires
8.
Neurooncol Adv ; 2(1): vdaa103, 2020.
Article in English | MEDLINE | ID: mdl-33063010

ABSTRACT

BACKGROUND: The mitogen-activated protein kinases/extracelluar signal-regulated kinases pathway is involved in cell growth and proliferation, and mutations in BRAF have made it an oncogene of interest in pediatric cancer. Previous studies found that BRAF mutations as well as KIAA1549-BRAF fusions are common in intracranial low-grade gliomas (LGGs). Fewer studies have tested for the presence of these genetic changes in spinal LGGs. The aim of this study was to better understand the prevalence of BRAF and other genetic aberrations in spinal LGG. METHODS: We retrospectively analyzed 46 spinal gliomas from patients aged 1-25 years from Children's Hospital Colorado (CHCO) and The Hospital for Sick Children (SickKids). CHCO utilized a 67-gene panel that assessed BRAF and additionally screened for other possible genetic abnormalities of interest. At SickKids, BRAF V600E was assessed by droplet digital polymerase chain reaction and immunohistochemistry. BRAF fusions were detected by fluorescence in situ hybridization, reverse transcription polymerase chain reaction, or NanoString platform. Data were correlated with clinical information. RESULTS: Of 31 samples with complete fusion analysis, 13 (42%) harbored KIAA1549-BRAF. All 13 (100%) patients with confirmed KIAA1549-BRAF survived the entirety of the study period (median [interquartile range] follow-up time: 47 months [27-85 months]) and 15 (83.3%) fusion-negative patients survived (follow-up time: 37.5 months [19.8-69.5 months]). Other mutations of interest were also identified in this patient cohort including BRAF V600E , PTPN11, H3F3A, TP53, FGFR1, and CDKN2A deletion. CONCLUSION: KIAA1549-BRAF was seen in higher frequency than BRAF V600E or other genetic aberrations in pediatric spinal LGGs and experienced lower death rates compared to KIAA1549-BRAF negative patients, although this was not statistically significant.

9.
Sci Rep ; 10(1): 16885, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037266

ABSTRACT

Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Craniopharyngioma/diagnostic imaging , Deep Learning , Diagnosis, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Models, Theoretical , Neural Networks, Computer , Preoperative Period
10.
Cell Rep ; 32(6): 108023, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783945

ABSTRACT

Ependymoma (EPN) is a brain tumor commonly presenting in childhood that remains fatal in most children. Intra-tumoral cellular heterogeneity in bulk-tumor samples significantly confounds our understanding of EPN biology, impeding development of effective therapy. We, therefore, use single-cell RNA sequencing, histology, and deconvolution to catalog cellular heterogeneity of the major childhood EPN subgroups. Analysis of PFA subgroup EPN reveals evidence of an undifferentiated progenitor subpopulation that either differentiates into subpopulations with ependymal cell characteristics or transitions into a mesenchymal subpopulation. Histological analysis reveals that progenitor and mesenchymal subpopulations co-localize in peri-necrotic zones. In conflict with current classification paradigms, relative PFA subpopulation proportions are shown to determine bulk-tumor-assigned subgroups. We provide an interactive online resource that facilitates exploration of the EPN single-cell dataset. This atlas of EPN cellular heterogeneity increases understanding of EPN biology.


Subject(s)
Ependymoma/genetics , Neoplastic Cells, Circulating/metabolism , Single-Cell Analysis/methods , Child , Humans
11.
Acta Neuropathol Commun ; 8(1): 68, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32404202

ABSTRACT

Adamantinomatous craniopharyngioma (ACP) is a biologically benign but clinically aggressive lesion that has a significant impact on quality of life. The incidence of the disease has a bimodal distribution, with peaks occurring in children and older adults. Our group previously published the results of a transcriptome analysis of pediatric ACPs that identified several genes that were consistently overexpressed relative to other pediatric brain tumors and normal tissue. We now present the results of a transcriptome analysis comparing pediatric to adult ACP to identify biological differences between these groups that may provide novel therapeutic insights or support the assertion that potential therapies identified through the study of pediatric ACP may also have a role in adult ACP. Using our compiled transcriptome dataset of 27 pediatric and 9 adult ACPs, obtained through the Advancing Treatment for Pediatric Craniopharyngioma Consortium, we interrogated potential age-related transcriptional differences using several rigorous mathematical analyses. These included: canonical differential expression analysis; divisive, agglomerative, and probabilistic based hierarchical clustering; information theory based characterizations; and the deep learning approach, HD Spot. Our work indicates that there is no therapeutically relevant difference in ACP gene expression based on age. As such, potential therapeutic targets identified in pediatric ACP are also likely to have relvance for adult patients.


Subject(s)
Craniopharyngioma/genetics , Craniopharyngioma/therapy , Pituitary Neoplasms/genetics , Pituitary Neoplasms/therapy , Transcriptome , Adult , Child , Computational Biology , Gene Expression Profiling , Humans , Middle Aged
12.
J Neurosurg Pediatr ; 26(1): 13-21, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32217793

ABSTRACT

OBJECTIVE: This study aimed to assess the safety and efficacy of MR-guided stereotactic laser ablation (SLA) therapy in the treatment of pediatric brain tumors. METHODS: Data from 17 North American centers were retrospectively reviewed. Clinical, technical, and radiographic data for pediatric patients treated with SLA for a diagnosis of brain tumor from 2008 to 2016 were collected and analyzed. RESULTS: A total of 86 patients (mean age 12.2 ± 4.5 years) with 76 low-grade (I or II) and 10 high-grade (III or IV) tumors were included. Tumor location included lobar (38.4%), deep (45.3%), and cerebellar (16.3%) compartments. The mean follow-up time was 24 months (median 18 months, range 3-72 months). At the last follow-up, the volume of SLA-treated tumors had decreased in 80.6% of patients with follow-up data. Patients with high-grade tumors were more likely to have an unchanged or larger tumor size after SLA treatment than those with low-grade tumors (OR 7.49, p = 0.0364). Subsequent surgery and adjuvant treatment were not required after SLA treatment in 90.4% and 86.7% of patients, respectively. Patients with high-grade tumors were more likely to receive subsequent surgery (OR 2.25, p = 0.4957) and adjuvant treatment (OR 3.77, p = 0.1711) after SLA therapy, without reaching significance. A total of 29 acute complications in 23 patients were reported and included malpositioned catheters (n = 3), intracranial hemorrhages (n = 2), transient neurological deficits (n = 11), permanent neurological deficits (n = 5), symptomatic perilesional edema (n = 2), hydrocephalus (n = 4), and death (n = 2). On long-term follow-up, 3 patients were reported to have worsened neuropsychological test results. Pre-SLA tumor volume, tumor location, number of laser trajectories, and number of lesions created did not result in a significantly increased risk of complications; however, the odds of complications increased by 14% (OR 1.14, p = 0.0159) with every 1-cm3 increase in the volume of the lesion created. CONCLUSIONS: SLA is an effective, minimally invasive treatment option for pediatric brain tumors, although it is not without risks. Limiting the volume of the generated thermal lesion may help decrease the incidence of complications.

13.
J Trauma Acute Care Surg ; 87(6): 1328-1335, 2019 12.
Article in English | MEDLINE | ID: mdl-31764482

ABSTRACT

BACKGROUND: Pediatric cervical spine injuries (CSI) are rare but potentially devastating sequelae of blunt trauma. Existing protocols to evaluate children at risk for CSI frequently incorporate computed topography (CT) and magnetic resonance imaging (MRI); however, the clinical value of performing both remains unclear. METHODS: Single-center retrospective review of pediatric trauma patients who underwent both CT and MRI of the cervical spine between 2001 and 2015. Based on radiographic findings, CT and MRI results were grouped into one of three categories: no injury, stable injury, or unstable injury. Radiographic instability was defined by disruption of two or more contiguous spinal columns while radiographic stability was defined by any other acute cervical spine abnormality on imaging. Clinical instability was defined by the need for surgical intervention (halo or spinal fusion), with the remaining patients, including children discharged in a cervical collar, considered clinically stable. RESULTS: In total, 221 children met inclusion criteria, with a median age of 9 (interquartile range, 3-14). The Glasgow Coma Scale (GCS) score of the cohort was 9 (interquartile range, 4-15). Thirty-three (14.9%) children had clinically unstable injuries, requiring surgical intervention. Among the 160 (72.4%) children with no injury on CT, MRI identified no injury in 84 (52.5%) cases, a stable injury in 76 (47.5%) cases, and an unstable injury in none. Among the 21 children with stable injuries on CT, MRI findings were concordant in 17 (81.0%) cases. In four (19.0%) cases, a spinal column injury was identified on CT and appeared to be stable, but later deemed unstable on MRI. Forty (18.1%) patients had an unstable injury on CT with 100% MRI concordance. CONCLUSION: In pediatric trauma patients suspected of having a CSI, a normal cervical spine CT is sufficient to rule out a clinically significant CSI as no child with a normal cervical CT was found to be radiographically or clinically unstable. LEVEL OF EVIDENCE: Diagnostic Test, level III.


Subject(s)
Magnetic Resonance Imaging , Spinal Injuries/diagnostic imaging , Tomography, X-Ray Computed , Adolescent , Child , Child, Preschool , Female , Humans , Male , Retrospective Studies , Spinal Injuries/etiology , Spinal Injuries/surgery , Wounds, Nonpenetrating/complications
14.
Neuro Oncol ; 21(12): 1540-1551, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31276586

ABSTRACT

BACKGROUND: Treatment for pediatric posterior fossa group A (PFA) ependymoma with gain of chromosome 1q (1q+) has not improved over the past decade owing partially to lack of clinically relevant models. We described the first 2 1q+ PFA cell lines, which have significantly enhanced our understanding of PFA tumor biology and provided a tool to identify specific 1q+ PFA therapies. However, cell lines do not accurately replicate the tumor microenvironment. Our present goal is to establish patient-derived xenograft (PDX) mouse models. METHODS: Disaggregated tumors from 2 1q+ PFA patients were injected into the flanks of NSG mice. Flank tumors were then transplanted into the fourth ventricle or lateral ventricle of NSG mice. Characterization of intracranial tumors was performed using imaging, histology, and bioinformatics. RESULTS: MAF-811_XC and MAF-928_XC established intracranially within the fourth ventricle and retained histological, methylomic, and transcriptomic features of primary patient tumors. We tested the feasibility of treating PDX mice with fractionated radiation or chemotherapy. Mice tolerated radiation despite significant tumor burden, and follow-up imaging confirmed radiation can reduce tumor size. Treatment with fluorouracil reduced tumor size but did not appear to prolong survival. CONCLUSIONS: MAF-811_XC and MAF-928_XC are novel, authentic, and reliable models for studying 1q+ PFA in vivo. Given the successful response to radiation, these models will be advantageous for testing clinically relevant combination therapies to develop future clinical trials for this high-risk subgroup of pediatric ependymoma.


Subject(s)
Brain Neoplasms/pathology , Chemoradiotherapy/mortality , Chromosomes, Human, Pair 1/genetics , Disease Models, Animal , Ependymoma/pathology , Infratentorial Neoplasms/pathology , Animals , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Cell Proliferation , Child , Ependymoma/genetics , Ependymoma/therapy , Humans , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
J Clin Oncol ; 37(12): 974-983, 2019 04 20.
Article in English | MEDLINE | ID: mdl-30811284

ABSTRACT

PURPOSE: The Children's Oncology Group trial ACNS0121 estimated event-free survival (EFS) and overall survival for children with intracranial ependymoma treated with surgery, radiation therapy, and-selectively-with chemotherapy. Treatment was administered according to tumor location, histologic grade, and extent of resection. The impacts of histologic grade, focal copy number gain on chromosome 1q, and DNA methylation profiles were studied for those undergoing surgery and immediate postoperative conformal radiation therapy (CRT). METHODS: ACNS0121 included 356 newly diagnosed patients (ages 1 to 21 years). Patients with classic supratentorial ependymoma were observed after gross total resection (GTR). Those undergoing subtotal resection received chemotherapy, second surgery, and CRT. The remaining patients received immediate postoperative CRT after near-total resection or GTR. CRT was administered with a 1.0-cm clinical target volume margin. The cumulative total dose was 59.4 Gy, except for patients who underwent GTR and were younger than age 18 months (who received 54 Gy). Patients were enrolled between October 2003 and September 2007 and were observed for 5 years. Supratentorial tumors were evaluated for RELA fusion; infratentorial tumors, for chromosome 1q gain. Classification of posterior fossa groups A and B was made by methylation profiles. RESULTS: The 5-year EFS rates were 61.4% (95% CI, 34.5% to 89.6%), 37.2% (95% CI, 24.8% to 49.6%), and 68.5% (95% CI, 62.8% to 74.2%) for observation, subtotal resection, and near-total resection/GTR groups given immediate postoperative CRT, respectively. The 5-year EFS rates differed significantly by tumor grade (P = .0044) but not by age, location, RELA fusion status, or posterior fossa A/posterior fossa B grouping. EFS was higher for patients with infratentorial tumors without 1q gain than with 1q gain (82.8% [95% CI, 74.4% to 91.2%] v 47.4% [95% CI, 26.0% to 68.8%]; P = .0013). CONCLUSION: The EFS for patients with ependymoma younger than 3 years of age who received immediate postoperative CRT and for older patients is similar. Irradiation should remain the mainstay of care for most subtypes.


Subject(s)
Ependymoma/therapy , Supratentorial Neoplasms/therapy , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Child , Child, Preschool , Cytoreduction Surgical Procedures , Ependymoma/genetics , Ependymoma/pathology , Ependymoma/surgery , Female , Humans , Infant , Male , Progression-Free Survival , Radiotherapy, Conformal , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/pathology , Supratentorial Neoplasms/surgery , Transcription Factor RelA/genetics , Treatment Outcome , Young Adult
16.
Mol Cancer Ther ; 17(9): 1984-1994, 2018 09.
Article in English | MEDLINE | ID: mdl-29925527

ABSTRACT

Children with ependymoma (EPN) are cured in less than 50% of cases, with little improvement in outcome over the last several decades. Chemotherapy has not affected survival in EPN, due in part to a lack of preclinical models that has precluded comprehensive drug testing. We recently developed two human EPN cell lines harboring high-risk phenotypes which provided us with an opportunity to execute translational studies. EPN and other pediatric brain tumor cell lines were subject to a large-scale comparative drug screen of FDA-approved oncology drugs for rapid clinical application. The results of this in vitro study were combined with in silico prediction of drug sensitivity to identify EPN-selective compounds, which were validated by dose curve and time course modeling. Mechanisms of EPN-selective antitumor effect were further investigated using transcriptome and proteome analyses. We identified three classes of oncology drugs that showed EPN-selective antitumor effect, namely, (i) fluorinated pyrimidines (5-fluorouracil, carmofur, and floxuridine), (ii) retinoids (bexarotene, tretinoin and isotretinoin), and (iii) a subset of small-molecule multireceptor tyrosine kinase inhibitors (axitinib, imatinib, and pazopanib). Axitinib's antitumor mechanism in EPN cell lines involved inhibition of PDGFRα and PDGFRß and was associated with reduced mitosis-related gene expression and cellular senescence. The clinically available, EPN-selective oncology drugs identified by our study have the potential to critically inform design of upcoming clinical studies in EPN, in particular for those children with recurrent EPN who are in the greatest need of novel therapeutic approaches. Mol Cancer Ther; 17(9); 1984-94. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/genetics , Drug Screening Assays, Antitumor/methods , Ependymoma/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Computer Simulation , Drug Approval , Ependymoma/drug therapy , Ependymoma/pathology , Humans , Risk Factors
17.
J Neurooncol ; 137(3): 621-629, 2018 May.
Article in English | MEDLINE | ID: mdl-29520612

ABSTRACT

Pediatric meningiomas, which account for < 1% of all meningiomas, are thought to have unique features, including being more aggressive than their adult counterparts. The goal of this investigation was to compare pediatric and adult meningiomas in a large head-to-head comparison. We used the Surveillance, Epidemiology, and End Result (SEER) datasets to compare meningioma demographics, first treatments, and outcomes among children/adolescents (0-21 years), young adults (22-45 years), and older adults (> 45 years). During 2004-2012, SEER contained 59148 patients age 0-107 years diagnosed with meningioma, with children/adolescents accounting for 381 (0.64%) patients. Unlike older and young adults, children/adolescents with meningioma did not demonstrate female predominance, and had an equal 1:1 male-to-female ratio. Children/adolescents also had almost three-times as many spinal tumors (13.1%) than young adults (4.2%) and older adults (4.4%). Both children/adolescents and young adults had undergone more gross total resections (both 43%) versus older adults (25%), and were treated more with radiation (14.6%, and 12.0% respectively) than their older counterparts (8.5%). In addition, both children/adolescents and young adults had significantly lower all-cause mortality (4.5% in both) than older adults (24.6%), during median 35-month follow-up. Inherent limitations of the SEER datasets restrict our ability to answer important questions regarding comparisons of tumor grading, histological diagnosis, cause-specific mortality, and neurofibromatosis status. Pediatric meningiomas appear distinct from their adult counterparts as they do not display the typical female predominance and include more clinically relevant spinal tumors. More extensive surgeries, greater use of radiation therapy, and lower all-cause mortality were seen in both children/adolescents and young adults, which raises questions regarding the perceived uniquely aggressive nature of pediatric meningiomas. However, due to the significant limitations of the SEER datasets, our results must be interpreted cautiously and stand only to foster novel questions, which would be better answered in well-designed, prospective studies.


Subject(s)
Meningeal Neoplasms/epidemiology , Meningeal Neoplasms/therapy , Meningioma/epidemiology , Meningioma/therapy , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , SEER Program , Treatment Outcome , Young Adult
18.
Pediatr Blood Cancer ; 65(5): e26960, 2018 05.
Article in English | MEDLINE | ID: mdl-29350470

ABSTRACT

BACKGROUND: A desperate need for novel therapies in pediatric ependymoma (EPN) exists, as chemotherapy remains ineffective and radiotherapy often fails. EPN have significant infiltration of immune cells, which correlates with outcome. Immune checkpoint inhibitors provide an avenue for new treatments. This study characterizes tumor-infiltrating immune cells in EPN and aims at predicting candidates for clinical trials using checkpoint inhibitors targeting PD-L1/PD-1 (programmed death ligand 1/programmed death 1). METHODS: The transcriptomic profiles of the primary study cohort of EPN and other pediatric brain tumors were interrogated to identify PD-L1 expression levels. Transcriptomic findings were validated using the western blotting, immunohistochemistry and flow cytometry. RESULTS: We evaluated PD-L1 mRNA expression across four intracranial subtypes of EPN in two independent cohorts and found supratentorial RELA fusion (ST-RELA) tumors to have significantly higher levels. There was a correlation between high gene expression and protein PD-L1 levels in ST-RELA tumors by both the western blot and immunohistochemisty. The investigation of EPN cell populations revealed PD-L1 was expressed on both tumor and myeloid cells in ST-RELA. Other subtypes had little PD-L1 in either tumor or myeloid cell compartments. Lastly, we measured PD-1 levels on tumor-infiltrating T cells and found ST-RELA tumors express PD-1 in both CD4 and CD8 T cells. A functional T-cell exhaustion assay found ST-RELA T cells to be exhausted and unable to secrete IFNγ on stimulation. CONCLUSIONS: These findings in ST-RELA suggest tumor evasion and immunsuppression due to PD-L1/PD-1-mediated T-cell exhaustion. Trials of checkpoint inhibitors in EPN should be enriched for ST-RELA tumors.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Ependymoma/metabolism , Supratentorial Neoplasms/metabolism , Transcription Factor RelA/metabolism , Adolescent , Adult , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Child , Child, Preschool , Cohort Studies , Ependymoma/genetics , Ependymoma/pathology , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Infant , Male , Molecular Targeted Therapy , Prognosis , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/pathology , T-Lymphocytes/metabolism , Transcription Factor RelA/genetics , Young Adult
19.
Childs Nerv Syst ; 34(3): 441-448, 2018 03.
Article in English | MEDLINE | ID: mdl-29285586

ABSTRACT

BACKGROUND: Ewing sarcoma typically arises in bone and is unrelated to intraparenchymal small blue cell embryonal central nervous system (CNS) tumors previously designated primitive neuroectodermal tumors (PNETs). When the CNS is impacted, it is usually secondary to local extension from either the epidural space, skull, or intracranial or spinal metastases. Primary examples within the cranial vault are rare, usually dural-based, and are largely case reports in the literature. We detail four pediatric patients with solitary, primary intracranial Ewing sarcoma, all manifesting the archetypal EWRS1 gene rearrangement that confirms diagnosis. PROCEDURE: Neurosurgical Department records, spanning 21 years (1995-2016), were reviewed to identify patients. Demographics, clinical history, pathological/genetic features, and clinical course were retrieved from the medical record and personal files of the authors. RESULTS: Four patients, one male and three females, age 5 to 16 years, were identified. One presented in extremis from a large lesion, two with soft tissue masses, and the fourth as an incidental finding after being involved in a motor vehicle collision. Three had clear bony involvement: a 10-year-old girl with a large left temporal lesion had clear origin in the skull, with spiculated calcified striations throughout the mass; a 9-year-old girl presented with a bony left petrous apex mass; and a 16-year-old girl presented with a left temporal mass with extension to the dura and underlying bone erosion. Only the 5-year-old boy had a large left frontoparietal mass traversing the falx with no bony contact. All four tumors manifested the diagnostic EWSR1 mutation and were treated with an Ewing sarcoma regimen. Outcomes were variable, with one patient showing progressive metastatic disease and death 3 years after presentation, one patient with disease-free survival 10.5 years after completion of therapy, and one alive and well at the completion of therapy 1 year after diagnosis. One patient completed therapy recently with post-therapy scans showing no evidence of disease. CONCLUSION: Testing for the EWSR1 mutation confirms the diagnosis of Ewing sarcoma and excludes other types of embryonal CNS tumors. Long-term disease-free survival is possible with adherence to the appropriate therapeutic regimen after gross surgical resection.


Subject(s)
Brain Neoplasms/diagnostic imaging , Sarcoma, Ewing/diagnostic imaging , Skull Neoplasms/diagnostic imaging , Adolescent , Brain Neoplasms/therapy , Child , Child, Preschool , Female , Humans , Male , Sarcoma, Ewing/therapy , Skull Neoplasms/therapy
20.
J Neurosurg Pediatr ; 20(5): 432-438, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28885094

ABSTRACT

OBJECTIVE Placement of a cerebrospinal fluid diversion device (i.e., shunt) is a routine pediatric neurosurgical procedure, often performed in the first weeks of life for treatment of congenital hydrocephalus. In the postoperative period, shunt placement may be complicated by subdural, catheter tract, parenchymal, and intraventricular hemorrhages. The authors observed a subset of infants and neonates who developed multifocal intraparenchymal hemorrhages (MIPH) following shunt placement and sought to determine any predisposing perioperative variables. METHODS A retrospective review of the electronic medical record at a tertiary-care children's hospital was performed for the period 1998-2015. Inclusion criteria consisted of shunt placement, age < 30 days, and available pre- and postoperative brain imaging. The following data were collected and analyzed for each case: ventricular size ratios, laboratory values, clinical presentation, shunt and valve type, and operative timing and approach. RESULTS A total of 121 neonates met the inclusion criteria for the study, and 11 patients (9.1%) had MIPH following shunt placement. The preoperative frontal and occipital horn ratio (FOR) was significantly higher in the patients with MIPH than in those without (0.65 vs 0.57, p < 0.001). The change in FOR (∆FOR) after shunt placement was significantly greater in the MIPH group (0.14 vs 0.08, p = 0.04). Among neonates who developed MIPH, aqueductal stenosis was the most common etiology (45%). The type of shunt valve was associated with incidence of MIPH (p < 0.001). Preoperative clinical parameters, including head circumference, bulging fontanelle, and coagulopathy, were not significantly associated with development of MIPH. CONCLUSIONS MIPH represents an underrecognized complication of neonatal shunted hydrocephalus. Markers of severity of ventriculomegaly (FOR) and ventricular response to CSF diversion (∆FOR) were significantly associated with occurrence of MIPH. Choice of shunt and etiology of hydrocephalus were also significantly associated with MIPH. After adjusting for corrected age, etiology of hydrocephalus, and shunt setting, the authors found that ∆FOR after shunting was still associated with MIPH. A prospective study of MIPH prevention strategies and assessment of possible implications for patient outcomes is needed.


Subject(s)
Cerebral Hemorrhage/etiology , Cerebrospinal Fluid Shunts , Frontal Lobe/diagnostic imaging , Hydrocephalus/surgery , Occipital Lobe/diagnostic imaging , Postoperative Complications/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Female , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/epidemiology , Incidence , Infant, Newborn , Logistic Models , Male , Multivariate Analysis , Organ Size , Postoperative Complications/epidemiology , Retrospective Studies , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL
...