Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 19(1): 34, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750536

ABSTRACT

BACKGROUND: Plastic pollution is a severe threat to marine ecosystems. While some microbial enzymes can degrade certain plastics, the ability of the global ocean microbiome to break down diverse environmental plastics remains limited. We employed metatranscriptomic data from an international ocean survey to explore global and regional patterns in microbial plastic degradation potential. RESULTS: On a global oceanic scale, we found no significant correlation between levels of plastic pollution and the expression of genes encoding enzymes putatively identified as capable of plastic degradation. Even when looking at different regional scales, ocean depth layers, or plastic types, we found no strong or even moderate correlation between plastic pollution and relative abundances of transcripts for enzymes with presumed plastic biodegradation potential. Our data, however, indicate that microorganisms in the Southern Ocean show a higher potential for plastic degradation, making them more appealing candidates for bioprospecting novel plastic-degrading enzymes. CONCLUSION: Our research contributes to understanding the complex global relationship between plastic pollution and microbial plastic degradation potential. We reveal that the transcription of putative plastic-degrading genes in the global ocean microbiome does not correlate to marine plastic pollution, highlighting the ongoing danger that plastic poses to marine environments threatened by plastic pollution.

2.
ISME Commun ; 4(1): ycae047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38650708

ABSTRACT

Increasing evidence suggests Nitrospirota are important contributors to aquatic and subsurface nitrogen and sulphur cycles. We determined the phylogenetic and ecological niche associations of Nitrospirota colonizing terrestrial aquifers. Nitrospirota compositions were determined across 59 groundwater wells. Distributions were strongly influenced by oxygen availability in groundwater, marked by a trade-off between aerobic (Nitrospira, Leptospirillum) and anaerobic (Thermodesulfovibrionia, unclassified) lineages. Seven Nitrospirota metagenome-assembled genomes (MAGs), or populations, were recovered from a subset of wells, including three from the recently designated class 9FT-COMBO-42-15. Most were relatively more abundant and transcriptionally active in dysoxic groundwater. These MAGs were analysed with 743 other Nitrospirota genomes. Results illustrate the predominance of certain lineages in aquifers (e.g. non-nitrifying Nitrospiria, classes 9FT-COMBO-42-15 and UBA9217, and Thermodesulfovibrionales family UBA1546). These lineages are characterized by mechanisms for nitrate reduction and sulphur cycling, and, excluding Nitrospiria, the Wood-Ljungdahl pathway, consistent with carbon-limited, low-oxygen, and sulphur-rich aquifer conditions. Class 9FT-COMBO-42-15 is a sister clade of Nitrospiria and comprises two families spanning a transition in carbon fixation approaches: f_HDB-SIOIB13 encodes rTCA (like Nitrospiria) and f_9FT-COMBO-42-15 encodes Wood-Ljungdahl CO dehydrogenase (like Thermodesulfovibrionia and UBA9217). The 9FT-COMBO-42-15 family is further differentiated by its capacity for sulphur oxidation (via DsrABEFH and SoxXAYZB) and dissimilatory nitrate reduction to ammonium, and gene transcription indicated active coupling of nitrogen and sulphur cycles by f_9FT-COMBO-42-15 in dysoxic groundwater. Overall, results indicate that Nitrospirota are widely distributed in groundwater and that oxygen availability drives the spatial differentiation of lineages with ecologically distinct roles related to nitrogen and sulphur metabolism.

3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38452204

ABSTRACT

Viruses are key members of microbial communities that exert control over host abundance and metabolism, thereby influencing ecosystem processes and biogeochemical cycles. Aquifers are known to host taxonomically diverse microbial life, yet little is known about viruses infecting groundwater microbial communities. Here, we analysed 16 metagenomes from a broad range of groundwater physicochemistries. We recovered 1571 viral genomes that clustered into 468 high-quality viral operational taxonomic units. At least 15% were observed to be transcriptionally active, although lysis was likely constrained by the resource-limited groundwater environment. Most were unclassified (95%), and the remaining 5% were Caudoviricetes. Comparisons with viruses inhabiting other aquifers revealed no shared species, indicating substantial unexplored viral diversity. In silico predictions linked 22.4% of the viruses to microbial host populations, including to ultra-small prokaryotes, such as Patescibacteria and Nanoarchaeota. Many predicted hosts were associated with the biogeochemical cycling of carbon, nitrogen, and sulfur. Metabolic predictions revealed the presence of 205 putative auxiliary metabolic genes, involved in diverse processes associated with the utilization of the host's intracellular resources for biosynthesis and transformation reactions, including those involved in nucleotide sugar, glycan, cofactor, and vitamin metabolism. Viruses, prokaryotes overall, and predicted prokaryotic hosts exhibited narrow spatial distributions, and relative abundance correlations with the same groundwater parameters (e.g. dissolved oxygen, nitrate, and iron), consistent with host control over viral distributions. Results provide insights into underexplored groundwater viruses, and indicate the large extent to which viruses may manipulate microbial communities and biogeochemistry in the terrestrial subsurface.


Subject(s)
Groundwater , Microbiota , Viruses , Bacteria/genetics , Bacteria/metabolism , Groundwater/microbiology , Viruses/genetics , Genetic Variation
4.
BMC Microbiol ; 23(1): 275, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773099

ABSTRACT

BACKGROUND: Gut microbiota play a key role in the nutrition of many marine herbivorous fishes through hindgut fermentation of seaweed. Gut microbiota composition in the herbivorous fish Kyphosus sydneyanus (family Kyphosidae) varies between individuals and gut sections, raising two questions: (i) is community composition stable over time, especially given seasonal shifts in storage metabolites of dietary brown algae, and (ii) what processes influence community assembly in the hindgut? RESULTS: We examined variation in community composition in gut lumen and mucosa samples from three hindgut sections of K. sydneyanus collected at various time points in 2020 and 2021 from reefs near Great Barrier Island, New Zealand. 16S rRNA gene analysis was used to characterize microbial community composition, diversity and estimated density. Differences in community composition between gut sections remained relatively stable over time, with little evidence of temporal variation. Clostridia dominated the proximal hindgut sections and Bacteroidia the most distal section. Differences were detected in microbial composition between lumen and mucosa, especially at genus level. CONCLUSIONS: High variation in community composition and estimated bacterial density among individual fish combined with low variation in community composition temporally suggests that initial community assembly involved environmental selection and random sampling/neutral effects. Community stability following colonisation could also be influenced by historical contingency, where early colonizing members of the community may have a selective advantage. The impact of temporal changes in the algae may be limited by the dynamics of substrate depletion along the gut following feeding, i.e. the depletion of storage metabolites in the proximal hindgut. Estimated bacterial density, showed that Bacteroidota has the highest density (copies/mL) in distal-most lumen section V, where SCFA concentrations are highest. Bacteroidota genera Alistipes and Rikenella may play important roles in the breakdown of seaweed into useful compounds for the fish host.


Subject(s)
Gastrointestinal Microbiome , Perciformes , Animals , RNA, Ribosomal, 16S/genetics , Fishes/microbiology , Digestive System , Bacteria/genetics , Bacteroidetes/genetics
5.
ISME Commun ; 3(1): 80, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596308

ABSTRACT

Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupo Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.0-7.5), and temperature (17.5-92.9 °C). Community composition, based on 16S rRNA amplicon sequence variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs. At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures. Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in 57.9-84.2% of samples) and abundant (1.7-12.0% sample relative abundance), and together comprised 44% of overall community abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.

6.
ISME Commun ; 3(1): 13, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36808147

ABSTRACT

Aquifers are populated by highly diverse microbial communities, including unusually small bacteria and archaea. The recently described Patescibacteria (or Candidate Phyla Radiation) and DPANN radiation are characterized by ultra-small cell and genomes sizes, resulting in limited metabolic capacities and probable dependency on other organisms to survive. We applied a multi-omics approach to characterize the ultra-small microbial communities over a wide range of aquifer groundwater chemistries. Results expand the known global range of these unusual organisms, demonstrate the wide geographical range of over 11,000 subsurface-adapted Patescibacteria, Dependentiae and DPANN archaea, and indicate that prokaryotes with ultra-small genomes and minimalistic metabolism are a characteristic feature of the terrestrial subsurface. Community composition and metabolic activities were largely shaped by water oxygen content, while highly site-specific relative abundance profiles were driven by a combination of groundwater physicochemistries (pH, nitrate-N, dissolved organic carbon). We provide insights into the activity of ultra-small prokaryotes with evidence that they are major contributors to groundwater community transcriptional activity. Ultra-small prokaryotes exhibited genetic flexibility with respect to groundwater oxygen content, and transcriptionally distinct responses, including proportionally greater transcription invested into amino acid and lipid metabolism and signal transduction in oxic groundwater, along with differences in taxa transcriptionally active. Those associated with sediments differed from planktonic counterparts in species composition and transcriptional activity, and exhibited metabolic adaptations reflecting a surface-associated lifestyle. Finally, results showed that groups of phylogenetically diverse ultra-small organisms co-occurred strongly across sites, indicating shared preferences for groundwater conditions.

7.
ISME J ; 16(11): 2561-2573, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35941171

ABSTRACT

The nitrogen cycle plays a major role in aquatic nitrogen transformations, including in the terrestrial subsurface. However, the variety of transformations remains understudied. To determine how nitrogen cycling microorganisms respond to different aquifer chemistries, we sampled groundwater with varying nutrient and oxygen contents. Genes and transcripts involved in major nitrogen-cycling pathways were quantified from 55 and 26 sites, respectively, and metagenomes and metatranscriptomes were analyzed from a subset of oxic and dysoxic sites (0.3-1.1 mg/L bulk dissolved oxygen). Nitrogen-cycling mechanisms (e.g. ammonia oxidation, denitrification, dissimilatory nitrate reduction to ammonium) were prevalent and highly redundant, regardless of site-specific physicochemistry or nitrate availability, and present in 40% of reconstructed genomes, suggesting that nitrogen cycling is a core function of aquifer communities. Transcriptional activity for nitrification, denitrification, nitrite-dependent anaerobic methane oxidation and anaerobic ammonia oxidation (anammox) occurred simultaneously in oxic and dysoxic groundwater, indicating the availability of oxic-anoxic interfaces. Concurrent activity by these microorganisms indicates potential synergisms through metabolite exchange across these interfaces (e.g. nitrite and oxygen). Fragmented denitrification pathway encoding and transcription was widespread among groundwater bacteria, although a considerable proportion of associated transcriptional activity was driven by complete denitrifiers, especially under dysoxic conditions. Despite large differences in transcription, the capacity for the final steps of denitrification was largely invariant to aquifer conditions, and most genes and transcripts encoding N2O reductases were the atypical Sec-dependant type, suggesting energy-efficiency prioritization. Results provide insights into the capacity for cooperative relationships in groundwater communities, and the richness and complexity of metabolic mechanisms leading to the loss of fixed nitrogen.


Subject(s)
Ammonium Compounds , Denitrification , Ammonia/metabolism , Ammonium Compounds/metabolism , Methane , Nitrates , Nitrites , Nitrogen/metabolism , Nitrogen Cycle , Oxidation-Reduction , Oxidoreductases/metabolism , Oxygen
8.
Article in English | MEDLINE | ID: mdl-35907589

ABSTRACT

Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Perciformes , Animals , Fatty Acids, Volatile/pharmacology , Fishes/genetics , Perciformes/genetics , RNA, Ribosomal, 16S/genetics
9.
Database (Oxford) ; 20222022 03 01.
Article in English | MEDLINE | ID: mdl-35266524

ABSTRACT

The number of publications reporting putative plastic-degrading microbes and proteins is continuously increasing, necessitating the compilation of these data and the development of tools to facilitate their analysis. We developed the PlasticDB web application to address this need, which comprises a database of microorganisms and proteins reported to biodegrade plastics. Associated metadata, such as the techniques utilized to assess biodegradation, the environmental source of microbial isolate and presumed thermophilic traits are also reported. Proteins in the database are categorized according to the plastic type they are reported to degrade. Each protein structure has been predicted in silico and can be visualized or downloaded for further investigation. In addition to standard database functionalities, such as searching, filtering and retrieving database records, we implemented several analytical tools that accept inputs, including gene, genome, metagenome, transcriptomes, metatranscriptomes and taxa table data. Users can now analyze their datasets for the presence of putative plastic-degrading species and potential plastic-degrading proteins and pathways from those species. Database URL:http://plasticdb.org.


Subject(s)
Metagenome , Plastics , Biodegradation, Environmental , Databases, Factual , Plastics/metabolism
10.
mSystems ; 7(1): e0125521, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35191775

ABSTRACT

Anaerobic ammonium oxidation (anammox) is important for converting bioavailable nitrogen into dinitrogen gas, particularly in carbon-poor environments. However, the diversity and prevalence of anammox bacteria in the terrestrial subsurface-a typically oligotrophic environment-are little understood. To determine the distribution and activity of anammox bacteria across a range of aquifer lithologies and physicochemistries, we analyzed 16S rRNA genes and quantified hydrazine synthase genes and transcripts sampled from 59 groundwater wells and metagenomes and metatranscriptomes from an oxic-to-dysoxic subset. Data indicate that anammox and anammox-associated bacteria (class "Candidatus Brocadiae") are prevalent in the aquifers studied, and that anammox community composition is strongly differentiated by dissolved oxygen (DO), but not ammonia/nitrite. While "Candidatus Brocadiae" diversity decreased with increasing DO, "Candidatus Brocadiae" 16S rRNA genes and hydrazine synthase (hzsB) genes and transcripts were detected across a wide range of bulk groundwater DO concentrations (0 to 10 mg/L). Anammox genes and transcripts correlated significantly with those involved in aerobic ammonia oxidation (amoA), potentially representing a major source of nitrite for anammox. Eight "Candidatus Brocadiae" genomes (63 to 95% complete), representing 2 uncharacterized families and 6 novel species, were reconstructed. Six genomes have genes characteristic of anammox, all for chemolithoautotrophy. Anammox and aerotolerance genes of up to four "Candidatus Brocadiae" genomes were transcriptionally active under oxic and dysoxic conditions, although activity was highest in dysoxic groundwater. The coexpression of nrfAH nitrite reductase genes by "Candidatus Brocadiae" suggests active regeneration of ammonia for anammox. Our findings indicate that anammox bacteria contribute to loss of fixed N across diverse anoxic-to-oxic aquifer conditions, which is likely supported by nitrite from aerobic ammonia oxidation. IMPORTANCE Anammox is increasingly shown to play a major role in the aquatic nitrogen cycle and can outcompete heterotrophic denitrification in environments low in organic carbon. Given that aquifers are characteristically oligotrophic, anammox may represent a major route for the removal of fixed nitrogen in these environments, including agricultural nitrogen, a common groundwater contaminant. Our research confirms that anammox bacteria and the anammox process are prevalent in aquifers and occur across diverse lithologies (e.g., sandy gravel, sand-silt, and volcanic) and groundwater physicochemistries (e.g., various oxygen, carbon, nitrate, and ammonium concentrations). Results reveal niche differentiation among anammox bacteria largely driven by groundwater oxygen contents and provide evidence that anammox is supported by proximity to oxic niches and handoffs from aerobic ammonia oxidizers. We further show that this process, while anaerobic, is active in groundwater characterized as oxic, likely due to the availability of anoxic niches.


Subject(s)
Ammonium Compounds , Groundwater , Humans , Nitrites/metabolism , Anaerobic Ammonia Oxidation , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Bacteria/genetics , Ammonium Compounds/metabolism , Ammonia/metabolism , Nitrogen/metabolism , Oxygen/metabolism , Groundwater/chemistry , Carbon/metabolism
11.
Environ Microbiol ; 24(1): 50-65, 2022 01.
Article in English | MEDLINE | ID: mdl-33973326

ABSTRACT

Estuaries are depositional environments prone to terrigenous mud sedimentation. While macrofaunal diversity and nitrogen retention are greatly affected by changes in sedimentary mud content, its impact on prokaryotic diversity and nitrogen cycling activity remains understudied. We characterized the composition of estuarine tidal flat prokaryotic communities spanning a habitat range from sandy to muddy sediments, while controlling for salinity and distance. We also determined the diversity, abundance and expression of ammonia oxidizers and N2 O-reducers within these communities by amoA and clade I nosZ gene and transcript analysis. Results show that prokaryotic communities and nitrogen cycling fractions were sensitive to changes in sedimentary mud content, and that changes in the overall community were driven by a small number of phyla. Significant changes occurred in prokaryotic communities and N2 O-reducing fractions with only a 3% increase in mud, while thresholds for ammonia oxidizers were less distinct, suggesting other factors are also important for structuring these guilds. Expression of nitrogen cycling genes was substantially higher in muddier sediments, and results indicate that the potential for coupled nitrification-denitrification became increasingly prevalent as mud content increased. Altogether, results demonstrate that mud content is a strong environmental driver of diversity and N-cycling dynamics in estuarine microbial communities.


Subject(s)
Estuaries , Microbiota , Salinity , Archaea/classification , Bacteria/classification , Geologic Sediments , Nitrification , Nitrogen/metabolism , Sand
12.
mBio ; 12(5): e0223521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34700377

ABSTRACT

Harmful cyanobacterial bloom occurrences have increased worldwide due to climate change and eutrophication, causing nuisance and animal deaths. Species from the benthic cyanobacterial genus Microcoleus are ubiquitous and form thick mats in freshwater systems, such as rivers, that are sometimes toxic due to the production of potent neurotoxins (anatoxins). Anatoxin-producing (toxic) strains typically coexist with non-anatoxin-producing (nontoxic) strains in mats, although the reason for this is unclear. To determine the genetic mechanisms differentiating toxic and nontoxic Microcoleus, we sequenced and assembled genomes from 11 cultures and compared these to another 31 Microcoleus genomes. Average nucleotide identities (ANI) indicate that toxic and nontoxic strains are distinct species (ANI, <95%), and only 6% of genes are shared across all 42 genomes, suggesting a high level of genetic divergence among Microcoleus strains. Comparative genomics showed substantial genome streamlining in toxic strains and a potential dependency on external sources for thiamine and sucrose. Toxic and nontoxic strains are further differentiated by an additional set of putative nitrate transporter (nitrogen uptake) and cyanophycin (carbon and nitrogen storage) genes, respectively. These genes likely confer distinct competitive advantages based on nutrient availability and suggest nontoxic strains are more robust to nutrient fluctuations. Nontoxic strains also possess twice as many transposable elements, potentially facilitating greater genetic adaptation to environmental changes. Our results offer insights into the divergent evolution of Microcoleus strains and the potential for cooperative and competitive interactions that contribute to the co-occurrence of toxic and nontoxic species within mats. IMPORTANCE Microcoleus autumnalis, and closely related Microcoleus species, compose a geographically widespread group of freshwater benthic cyanobacteria. Canine deaths due to anatoxin-a poisoning, following exposure to toxic proliferations, have been reported globally. While Microcoleus proliferations are on the rise, the mechanisms underpinning competition between, or coexistence of, toxic and nontoxic strains are unknown. This study identifies substantial genetic differences between anatoxin-producing and non-anatoxin-producing strains, pointing to reduced metabolic flexibility in toxic strains, and potential dependence on cohabiting nontoxic strains. Results provide insights into the metabolic and evolutionary differences between toxic and nontoxic Microcoleus, which may assist in predicting and managing aquatic proliferations.


Subject(s)
Bacterial Toxins/metabolism , Cyanobacteria/metabolism , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA Transposable Elements , Genome Size , Nitrate Transporters/genetics , Nitrate Transporters/metabolism , Nitrogen/metabolism , Phylogeny , Rivers/microbiology
13.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34285074

ABSTRACT

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Subject(s)
Bacteria/metabolism , Gases/metabolism , Isoptera/microbiology , Microbiota , Animals , Australia , Hydrogen/metabolism , Oxygen Consumption , Soil Microbiology
14.
Microbiome ; 9(1): 135, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34116726

ABSTRACT

BACKGROUND: Terrestrial hot spring settings span a broad spectrum of physicochemistries. Physicochemical parameters, such as pH and temperature, are key factors influencing differences in microbial composition across diverse geothermal areas. Nonetheless, analysis of hot spring pools from the Taupo Volcanic Zone (TVZ), New Zealand, revealed that some members of the bacterial genus, Acidithiobacillus, are prevalent across wide ranges of hot spring pHs and temperatures. To determine the genomic attributes of Acidithiobacillus that inhabit such diverse conditions, we assembled the genomes of 19 uncultivated hot spring Acidithiobacillus strains from six geothermal areas and compared these to 37 publicly available Acidithiobacillus genomes from various habitats. RESULTS: Analysis of 16S rRNA gene amplicons from 138 samples revealed that Acidithiobacillus comprised on average 11.4 ± 16.8% of hot spring prokaryotic communities, with three Acidithiobacillus amplicon sequence variants (ASVs) (TVZ_G1, TVZ_G2, TVZ_G3) accounting for > 90% of Acidithiobacillus in terms of relative abundance, and occurring in 126 out of 138 samples across wide ranges of temperature (17.5-92.9 °C) and pH (1.0-7.5). We recovered 19 environmental genomes belonging to each of these three ASVs, as well as a fourth related group (TVZ_G4). Based on genome average nucleotide identities, the four groups (TVZ_G1-TVZ_G4) constitute distinct species (ANI < 96.5%) of which three are novel Acidithiobacillus species (TVZ_G2-TVZ_G4) and one belongs to Acidithiobacillus caldus (TVZ_G1). All four TVZ Acidithiobacillus groups were found in hot springs with temperatures above the previously known limit for the genus (up to 40 °C higher), likely due to significantly higher proline and GC contents than other Acidithiobacillus species, which are known to increase thermostability. Results also indicate hot spring-associated Acidithiobacillus have undergone genome streamlining, likely due to thermal adaptation. Moreover, our data suggest that Acidithiobacillus prevalence across varied hot spring pHs is supported by distinct strategies, whereby TVZ_G2-TVZ_G4 regulate pH homeostasis mostly through Na+/H+ antiporters and proton-efflux ATPases, whereas TVZ_G1 mainly relies on amino acid decarboxylases. CONCLUSIONS: This study provides insights into the distribution of Acidithiobacillus species across diverse hot spring physichochemistries and determines genomic features and adaptations that potentially enable Acidithiobacillus species to colonize a broad range of temperatures and pHs in geothermal environments. Video Abstract.


Subject(s)
Acidithiobacillus , Hot Springs , Acidithiobacillus/genetics , Metagenomics , New Zealand , RNA, Ribosomal, 16S/genetics , Temperature
15.
mSystems ; 6(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468707

ABSTRACT

The number of plastic-degrading microorganisms reported is rapidly increasing, making it possible to explore the conservation and distribution of presumed plastic-degrading traits across the diverse microbial tree of life. Putative degraders of conventional high-molecular-weight polymers, including polyamide, polystyrene, polyvinylchloride, and polypropylene, are spread widely across bacterial and fungal branches of the tree of life, although evidence for plastic degradation by a majority of these taxa appears limited. In contrast, we found strong degradation evidence for the synthetic polymer polylactic acid (PLA), and the microbial species related to its degradation are phylogenetically conserved among the bacterial family Pseudonocardiaceae We collated data on genes and enzymes related to the degradation of all types of plastic to identify 16,170 putative plastic degradation orthologs by mining publicly available microbial genomes. The plastic with the largest number of putative orthologs, 10,969, was the natural polymer polyhydroxybutyrate (PHB), followed by the synthetic polymers polyethylene terephthalate (PET) and polycaprolactone (PCL), with 8,233 and 6,809 orthologs, respectively. These orthologous genes were discovered in the genomes of 6,000 microbial species, and most of them are as yet not identified as plastic degraders. Furthermore, all these species belong to 12 different microbial phyla, of which just 7 phyla have reported degraders to date. We have centralized information on reported plastic-degrading microorganisms within an interactive and updatable phylogenetic tree and database to confirm the global and phylogenetic diversity of putative plastic-degrading taxa and provide new insights into the evolution of microbial plastic-degrading capabilities and avenues for future discovery.IMPORTANCE We have collated the most complete database of microorganisms identified as being capable of degrading plastics to date. These data allow us to explore the phylogenetic distribution of these organisms and their enzymes, showing that traits for plastic degradation are predominantly not phylogenetically conserved. We found 16,170 putative plastic degradation orthologs in the genomes of 12 different phyla, which suggests a vast potential for the exploration of these traits in other taxa. Besides making the database available to the scientific community, we also created an interactive phylogenetic tree that can display all of the collated information, facilitating visualization and exploration of the data. Both the database and the tree are regularly updated to keep up with new scientific reports. We expect that our work will contribute to the field by increasing the understanding of the genetic diversity and evolution of microbial plastic-degrading traits.

16.
Geobiology ; 18(5): 619-640, 2020 09.
Article in English | MEDLINE | ID: mdl-32336004

ABSTRACT

Digitate siliceous hot spring deposits are a form of biomediated sinter that is relatively common in the Taupo Volcanic Zone (TVZ), New Zealand, and elsewhere on Earth. Such deposits have gained prominence recently because of their morphological similarity to opaline silica rocks of likely hot spring origin found by the Spirit rover on Mars and the consequent implications for potential biosignatures there. Here, we investigate the possible relationship between microbial community composition and morphological diversity among digitate structures from actively forming siliceous hot spring sinters depositing subaerially in shallow discharge channels and around pool rims at several physicochemically distinct geothermal fields in the TVZ. The TVZ digitate sinters range in morphologic subtype from knobby to spicular, and are shown to be microstromatolites that grow under varied pH ranges, temperatures, and water chemistries. Scanning electron microscopy and molecular analyses revealed that TVZ digitate sinters are intimately associated with a diverse array of bacterial, archaeal and eukaryotic micro-organisms, and for most digitate structures the diversity and quantity of prokaryotes was higher than that of eukaryotes. However, microbial community composition was not correlated with morphologic subtypes of digitate sinter, and observations provided limited evidence that pH (acidic versus alkali) affects morphology. Instead, results suggest hydrodynamics may be an important factor influencing variations in morphology, while water chemistry, pH, and temperature are strong drivers of microbial composition and diversity.


Subject(s)
Hot Springs , Microbiota , Archaea , Bacteria , Hot Temperature , New Zealand
17.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32175557

ABSTRACT

Bacterial communities are crucial to soil ecosystems and are known to be sensitive to environmental changes. However, our understanding of how present-day soil bacterial communities remain impacted by historic land uses is limited; implications for their functional potential are especially understudied. Through 16S rRNA gene amplicon and shotgun metagenomic sequencing, we characterized the structure and functional potential of soil bacterial communities after land use conversion. Sites converted from pine plantations to dairy pasture were sampled five- and eight-years post conversion. The bacterial community composition and functional potential at these sites were compared to long-term dairy pastures and pine forest reference sites. Bacterial community composition and functional potential at the converted sites differed significantly from those at reference sites (P = 0.001). On average, they were more similar to those in the long-term dairy sites and showed gradual convergence (P = 0.001). Differences in composition and functional potential were most strongly related to nutrients such as nitrogen, Olsen P and the carbon to nitrogen ratio. Genes related to the cycling of nitrogen, especially denitrification, were underrepresented in converted sites compared to long-term pasture soils. Together, our study highlights the long-lasting impacts land use conversion can have on microbial communities, and the implications for future soil health and functioning.


Subject(s)
Soil Microbiology , Soil , Bacteria/genetics , Forests , RNA, Ribosomal, 16S/genetics
18.
Front Microbiol ; 11: 622824, 2020.
Article in English | MEDLINE | ID: mdl-33537022

ABSTRACT

Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.

19.
mSystems ; 4(3)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31164408

ABSTRACT

Microorganisms can have a profound and varying effect on the chemical character of environments and, thereby, ecological health. Their capacity to consume or transform contaminants leads to contrasting outcomes, such as the dissipation of nutrient pollution via denitrification, the breakdown of spilled oil, or eutrophication via primary producer overgrowth. Recovering the genomes of organisms directly from the environment is useful to gain insights into resource usage, interspecies collaborations (producers and consumers), and trait acquisition. Microbial data can also be considered alongside the broader biological character of an environment through the co-recovery of eukaryotic DNA. The contributions of individual microorganisms (bacteria, archaea, and protists) to snapshots of ecosystem processes can be determined by integrating genomics with functional methods. This combined approach enables a detailed understanding of how microbial communities drive biogeochemical cycles, and although currently limited by scale, key attributes can be effectively extrapolated with lower-resolution methods to determine wider ecological relevance.

20.
mSystems ; 4(4)2019.
Article in English | MEDLINE | ID: mdl-31086829

ABSTRACT

"Candidatus Synechococcus feldmannii" is a facultative intracellular symbiont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information of sponge-associated cyanobacteria derives thus far from the obligate and extracellular symbiont "Candidatus Synechococcus spongiarum." Here we utilized a differential methylation-based approach for bacterial DNA enrichment combined with metagenomics to obtain the first draft genomes of "Ca. Synechococcus feldmannii." By comparative genomics, we revealed that some genomic features (e.g., iron transport mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated proteins]) are unique to both symbiont types and absent or rare in the genomes of taxonomically related free-living cyanobacteria. These genomic features likely enable life under the conditions found inside the sponge host. Interestingly, there are many genomic features that are shared by "Ca. Synechococcus feldmannii" and free-living cyanobacteria, while they are absent in the obligate symbiont "Ca. Synechococcus spongiarum." These include genes related to cell surface structures, genetic regulation, and responses to environmental stress, as well as the composition of photosynthetic genes and DNA metabolism. We speculate that the presence of these genes confers on "Ca. Synechococcus feldmannii" its facultative nature (i.e., the ability to respond to a less stable environment when free-living). Our comparative analysis revealed that distinct genomic features depend on the nature of the symbiotic interaction: facultative and intracellular versus obligate and extracellular. IMPORTANCE Given the evolutionary position of sponges as one of the earliest phyla to depart from the metazoan stem lineage, studies on their distinct and exceptionally diverse microbial communities should yield a better understanding of the origin of animal-bacterium interactions. While genomes of several extracellular sponge symbionts have been published, the intracellular symbionts have, so far, been elusive. Here we compare the genomes of two unicellular cyanobacterial sponge symbionts that share an ancestor but followed different evolutionary paths-one became intracellular and the other extracellular. Counterintuitively, the intracellular cyanobacteria are facultative, while the extracellular ones are obligate. By sequencing the genomes of the intracellular cyanobacteria and comparing them to the genomes of the extracellular symbionts and related free-living cyanobacteria, we show how three different cyanobacterial lifestyles are reflected by adaptive genomic features.

SELECTION OF CITATIONS
SEARCH DETAIL
...