Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(4): e0353623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376152

ABSTRACT

Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens like Salmonella enterica and Listeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detection of S. enterica and L. monocytogenes by qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n = 1,990) was analyzed by multiplex qPCR specific for S. enterica and L. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection of S. enterica and L. monocytogenes were 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter for S. enterica; for L. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for both S. enterica and L. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCE: Detecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence of Salmonella enterica and Listeria monocytogenes in irrigation water samples examined in this study.


Subject(s)
Listeria monocytogenes , Salmonella enterica , Salmonella enterica/genetics , Listeria monocytogenes/genetics , Fresh Water/microbiology , Rivers , Water , Food Microbiology
2.
Microbiol Spectr ; 9(2): e0066921, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612697

ABSTRACT

Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples (n = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland's Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes, respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly (P < 0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season. Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland's Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.


Subject(s)
Agricultural Irrigation , Listeria monocytogenes/isolation & purification , Salmonella enterica/isolation & purification , Water Microbiology , Filtration , Fresh Water/microbiology , Maryland , Water
3.
Appl Environ Microbiol ; 87(13): e0021121, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893119

ABSTRACT

Enteric viruses (EVs) are the largest contributors to foodborne illnesses and outbreaks globally. Their ability to persist in the environment, coupled with the challenges experienced in environmental monitoring, creates a critical aperture through which agricultural crops may become contaminated. This study involved a 17-month investigation of select human EVs and viral indicators in nontraditional irrigation water sources (surface and reclaimed waters) in the Mid-Atlantic region of the United States. Real-time quantitative PCR was used for detection of Aichi virus, hepatitis A virus, and norovirus genotypes I and II (GI and GII, respectively). Pepper mild mottle virus (PMMoV), a common viral indicator of human fecal contamination, was also evaluated, along with atmospheric (air and water temperature, cloud cover, and precipitation 24 h, 7 days, and 14 days prior to sample collection) and physicochemical (dissolved oxygen, pH, salinity, and turbidity) data, to determine whether there were any associations between EVs and measured parameters. EVs were detected more frequently in reclaimed waters (32% [n = 22]) than in surface waters (4% [n = 49]), similar to PMMoV detection frequency in surface (33% [n = 42]) and reclaimed (67% [n = 21]) waters. Our data show a significant correlation between EV and PMMoV (R2 = 0.628, P < 0.05) detection levels in reclaimed water samples but not in surface water samples (R2 = 0.476, P = 0.78). Water salinity significantly affected the detection of both EVs and PMMoV (P < 0.05), as demonstrated by logistic regression analyses. These results provide relevant insights into the extent and degree of association between human (pathogenic) EVs and water quality data in Mid-Atlantic surface and reclaimed waters, as potential sources for agricultural irrigation. IMPORTANCE Microbiological analysis of agricultural waters is fundamental to ensure microbial food safety. The highly variable nature of nontraditional sources of irrigation water makes them particularly difficult to test for the presence of viruses. Multiple characteristics influence viral persistence in a water source, as well as affecting the recovery and detection methods that are employed. Testing for a suite of viruses in water samples is often too costly and labor-intensive, making identification of suitable indicators for viral pathogen contamination necessary. The results from this study address two critical data gaps, namely, EV prevalence in surface and reclaimed waters of the Mid-Atlantic region of the United States and subsequent evaluation of physicochemical and atmospheric parameters used to inform the potential for the use of indicators of viral contamination.


Subject(s)
Agricultural Irrigation , Enterovirus/isolation & purification , Tobamovirus/isolation & purification , Water Pollutants/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Mid-Atlantic Region , Oxygen/analysis , Salinity , Water Microbiology , Water Pollution/analysis
4.
PLoS One ; 15(3): e0229365, 2020.
Article in English | MEDLINE | ID: mdl-32182252

ABSTRACT

Irrigation water contaminated with Salmonella enterica and Listeria monocytogenes may provide a route of contamination of raw or minimally processed fruits and vegetables. While previous work has surveyed specific and singular types of agricultural irrigation water for bacterial pathogens, few studies have simultaneously surveyed different water sources repeatedly over an extended period of time. This study quantified S. enterica and L. monocytogenes levels (MPN/L) at 6 sites, including river waters: tidal freshwater river (MA04, n = 34), non-tidal freshwater river, (MA05, n = 32), one reclaimed water holding pond (MA06, n = 25), two pond water sites (MA10, n = 35; MA11, n = 34), and one produce wash water site (MA12, n = 10) from September 2016-October 2018. Overall, 50% (84/168) and 31% (53/170) of sampling events recovered S. enterica and L. monocytogenes, respectively. Results showed that river waters supported significantly (p < 0.05) greater levels of S. enterica than pond or reclaimed waters. The non-tidal river water sites (MA05) with the lowest water temperature supported significantly greater level of L. monocytogenes compared to all other sites; L. monocytogenes levels were also lower in winter and spring compared to summer seasons. Filtering 10 L of water through a modified Moore swab (MMS) was 43.5 (Odds ratio, p < 0.001) and 25.5 (p < 0.001) times more likely to recover S. enterica than filtering 1 L and 0.1 L, respectively; filtering 10 L was 4.8 (p < 0.05) and 3.9 (p < 0.05) times more likely to recover L. monocytogenes than 1L and 0.1 L, respectively. Work presented here shows that S. enterica and L. monocytogenes levels are higher in river waters compared to pond or reclaimed waters in the Mid-Atlantic region of the U.S., and quantitatively shows that analyzing 10 L water is more likely recover pathogens than smaller samples of environmental waters.


Subject(s)
Agricultural Irrigation/methods , Fresh Water/microbiology , Listeria monocytogenes/isolation & purification , Salmonella enterica/isolation & purification , Seasons , Water Microbiology , Mid-Atlantic Region , Prevalence , United States
5.
Appl Environ Microbiol ; 85(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30877112

ABSTRACT

Untreated biological soil amendments of animal origin (BSAAO) are commonly used as biological fertilizers but can harbor foodborne pathogens like Salmonella enterica, leading to potential transfer from soils to fruits and vegetables intended for human consumption. Heat-treated poultry pellets (HTPP) can provide produce growers with a slow-release fertilizer with a minimized risk of pathogen contamination. Little is known about the impact of HTPP-amended soil on the survival of Salmonella enterica The contributions of RpoS and formation of viable but nonculturable cells to Salmonella survival in soils are also inadequately understood. We quantified the survival of Salmonella enterica subsp. enterica serovar Newport wild-type (WT) and rpoS-deficient (ΔrpoS mutant) strains in HTPP-amended and unamended soil with or without spinach plants over 91 days using culture and quantitative PCR methods with propidium monoazide (PMA-qPCR). Simulated "splash" transfer of S. Newport from soil to spinach was evaluated at 35 and 63 days postinoculation (dpi). The S. Newport WT and ΔrpoS mutant reached the limit of detection, 1.0 log CFU/g (dry weight), in unamended soil after 35 days, whereas 2 to 4 log CFU/g (dry weight) was observed for both WT and ΔrpoS mutant strains at 91 dpi in HTPP-amended soil. S. Newport levels in soils determined by PMA-qPCR and plate count methods were similar (P > 0.05). HTPP-amended soils supported higher levels of S. Newport transfer to and survival on spinach leaves for longer periods of time than did unamended soils (P < 0.05). Salmonella Newport introduced to HTPP-amended soils survived for longer periods and was more likely to transfer to and persist on spinach plants than was S. Newport introduced to unamended soils.IMPORTANCE Heat-treated poultry pellets (HTPP) often are used by fruit and vegetable growers as a slow-release fertilizer. However, contamination of soil on farms may occur through contaminated irrigation water or scat from wild animals. Here, we show that the presence of HTPP in soil led to increased S. Newport survival in soil and to greater likelihood of its transfer to and survival on spinach plants. There were no significant differences in survival durations of WT and ΔrpoS mutant isolates of S. Newport. The statistically similar populations recovered by plate count and estimated by PMA-qPCR for both strains in the amended and unamended soils in this study indicate that all viable populations of S. Newport in soils were culturable.


Subject(s)
Fertilizers , Salmonella enterica/physiology , Soil Microbiology , Soil/chemistry , Spinacia oleracea/microbiology , Agriculture/methods , Animals , Bacterial Proteins/genetics , Poultry , Salmonella enterica/genetics , Sigma Factor/genetics
6.
Environ Res ; 172: 630-636, 2019 05.
Article in English | MEDLINE | ID: mdl-30878734

ABSTRACT

The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.


Subject(s)
Agricultural Irrigation , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Water Microbiology , Agricultural Irrigation/statistics & numerical data , Bacterial Load , Enteropathogenic Escherichia coli/physiology , Feces/microbiology , Mid-Atlantic Region , Prevalence , Shiga-Toxigenic Escherichia coli/physiology
7.
Appl Environ Microbiol ; 85(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30552193

ABSTRACT

Untreated biological soil amendments of animal origin (BSAAO), such as manure, are commonly used to fertilize soils for growing fruit and vegetable crops and can contain enteric bacterial foodborne pathogens. Little is known about the comparative longitudinal survival of pathogens in agricultural fields containing different types of BSAAO, and field data may be useful to determine intervals between manure application and harvest of produce intended for human consumption to minimize foodborne illness. This study generated 324 survival profiles from 12 different field trials at three different sites (UMES, PA, and BARC) in the Mid-Atlantic United States from 2011 to 2015 of inoculated nonpathogenic Escherichia coli (gEc) and attenuated O157 E. coli (attO157) in soils which were unamended (UN) or amended with untreated poultry litter (PL), horse manure (HM), or dairy manure solids (DMS) or liquids (DML). Site, season, inoculum level (low/high), amendment type, management (organic/conventional), and depth (surface/tilled) all significantly (P < 0.0001) influenced survival duration (dpi100mort). Spatiotemporal factors (site, year, and season) in which the field trial was conducted influenced survival durations of gEc and attO157 to a greater extent than weather effects (average daily temperature and rainfall). Initial soil moisture content was the individual factor that accounted for the greatest percentage of variability in survival duration. PL supported greater survival durations of gEc and attO157, followed by HM, UN, and DMS in amended soils. The majority of survival profiles for gEc and attO157 which survived for more than 90 days came from a specific year (i.e., 2013). The effect of management and depth on dpi100mort were dependent on the amendment type evaluated.IMPORTANCE Current language in the Food Safety Modernization Act Produce Safety Rule states no objection to a 90- or 120-day interval between application of untreated BSAAO and harvest of crops to minimize transfer of pathogens to produce intended for human consumption with the intent to limit potential cases of foodborne illness. This regional multiple season, multiple location field trial determined survival durations of Escherichia coli in soils amended with manure to determine whether this interval is appropriate. Spatiotemporal factors influence survival durations of E. coli more than amendment type, total amount of E. coli present, organic or conventional soil management, and depth of manure application. Overall, these data show poultry litter may support extended survival of E. coli compared to horse manure or dairy manure, but spatiotemporal factors like site and season may have more influence than manure type in supporting survival of E. coli beyond 90 days in amended soils in the Mid-Atlantic United States.


Subject(s)
Agriculture , Escherichia coli/growth & development , Manure/microbiology , Soil Microbiology , Soil/chemistry , Weather , Animals , Colony Count, Microbial , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/metabolism , Escherichia coli/isolation & purification , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Horses/microbiology , Poultry/microbiology , Rain , Seasons , Temperature , United States
8.
J Food Prot ; 80(4): 668-673, 2017 04.
Article in English | MEDLINE | ID: mdl-28294684

ABSTRACT

Salmonella enterica associated with consumption of cucumbers ( Cucumis sativus ) has led to foodborne outbreaks in the United States. Whole and fresh-cut cucumbers are susceptible to S. enterica contamination during growing, harvesting, and postharvest handling. The application of lytic bacteriophages specific for S. enterica was evaluated to reduce Salmonella populations on cucumbers. Unwaxed cucumbers ('Lisboa' variety, or mini-cucumbers purchased at retail) were inoculated with Salmonella Newport (5 log CFU per cucumber) and were sprayed with 3.2 mL of phosphate-buffered saline (control) or 10 log PFU/ml of SalmoFresh, a Salmonella-specific bacteriophage preparation (phage), to deliver 4.76 × 107 PFU/cm2. Cucumbers were stored at 10 or 22°C for 7 days. Inoculated mini-cucumbers were sliced with a sterile knife to investigate Salmonella transfer to mesocarp, and cut pieces were stored at 4°C for 2 days. Populations (log CFU per cucumber) of Salmonella Newport on phage-treated whole cucumbers were significantly (P < 0.05) smaller (2.44 ± 0.94) than on control-treated cucumbers (4.27 ± 0.37) on day 0. Populations on phage-treated cucumbers stored at 10°C were 1.72 ± 0.77 and 1.56 ± 0.46, which were significantly lower than those on control-treated cucumbers (3.20 ± 0.48 and 2.33 ± 0.25) on days 1 and 4, respectively. Between days 0 and 1, populations on control-treated cucumbers stored at 10 and 22°C declined by 1.07 and 2.47 log CFU per cucumber, respectively. At 22°C, Salmonella Newport populations declined by 2.37 log CFU per cucumber between days 0 and 1. Phage application to whole cucumbers before slicing did not reduce the transfer of Salmonella Newport to fresh-cut slices. Lytic phage application may be a potential intervention to reduce Salmonella populations on whole cucumbers.


Subject(s)
Bacteriophages , Cucumis sativus , Colony Count, Microbial , Food Microbiology , Salmonella , Salmonella Phages , Salmonella enterica
9.
Foodborne Pathog Dis ; 13(11): 587-591, 2016 11.
Article in English | MEDLINE | ID: mdl-27548768

ABSTRACT

Cantaloupes, marketed as "Rocky Ford," were implicated in the U.S. multistate outbreak of listeriosis in 2011, which caused multiple fatalities. Listeria monocytogenes can survive on whole cantaloupes and can be transferred to the flesh of melons. The growth of L. monocytogenes on fresh-cut "Athena" and "Rocky Ford" cantaloupe cultivars during refrigerated storage was evaluated. Fresh-cut cubes (16.4 cm3) from field-grown cantaloupes were each inoculated with 5 log10 CFU/mL of a multi-strain mixture of L. monocytogenes and stored at 4°C or 10°C. Inoculated fresh-cut cubes were also: (1) continuously stored at 4°C for 3 days; (2) temperature-abused (TA: 25°C for 4 h) on day 0; or (3) stored at 4°C for 24 h, exposed to TA on day 1, and subsequently stored at 4°C until day 3. L. monocytogenes populations on fresh-cut melons continuously stored at 4°C or 10°C were enumerated on selected days for up to 15 days and after each TA event. Brix values for each cantaloupe variety were determined. L. monocytogenes populations on fresh-cut cantaloupe cubes stored at 4°C increased by 1.0 and 3.0 log10 CFU/cube by day 7 and 15, respectively, whereas those stored at 10°C increased by 3.0 log10 CFU/cube by day 7. Populations of L. monocytogenes on fresh-cut cantaloupes stored at 10°C were significantly (p < 0.05) greater than those stored at 4°C during the study. L. monocytogenes showed similar growth on fresh-cut "Athena" and "Rocky Ford" cubes, even though "Athena" cubes had significantly higher Brix values than the "Rocky Ford" fruit. L. monocytogenes populations on fresh-cut cantaloupes exposed to TA on day 1 and then refrigerated were significantly greater (0.74 log10 CFU) than those stored continuously at 4°C for 3 days. Storage at 10°C or exposure to TA events promoted growth of L. monocytogenes on fresh-cut cantaloupe during refrigerated storage.


Subject(s)
Crops, Agricultural/microbiology , Cucumis melo/microbiology , Fast Foods/microbiology , Food Contamination , Food Storage , Fruit/microbiology , Listeria monocytogenes/growth & development , Colony Count, Microbial , Crops, Agricultural/chemistry , Cucumis melo/chemistry , Dietary Carbohydrates/analysis , Fast Foods/analysis , Food Contamination/prevention & control , Food Handling/standards , Food Storage/standards , Fruit/chemistry , Guideline Adherence , Guidelines as Topic , Listeria monocytogenes/isolation & purification , Microbial Viability , Refrigeration , Species Specificity
10.
Int J Food Microbiol ; 234: 65-70, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27376678

ABSTRACT

Whole cantaloupes (Cucumis melo L.), marketed as 'Rocky Ford', were implicated in a large multi-state outbreak of listeriosis in the United States in 2011; however, survival and growth of Listeria monocytogenes on whole cantaloupes remains relatively unexplored. The research presented here evaluated three different storage temperatures, two sites of contamination of cantaloupes, and two cantaloupe varieties to determine their effect on the survival of L. monocytogenes. 'Athena' and 'Rocky Ford' cantaloupe cultivars were grown in soil and harvested, and individual melons subsequently received a multi-strain inoculum of L. monocytogenes (6 log CFU/melon), which were then stored at 4°C, 10°C, and 25°C. Changes in L. monocytogenes populations on the rinds and stem scars of cantaloupes stored at each temperature were determined at selected times for up to 15days. An analysis of variance revealed that inoculation site and storage temperature significantly affected survival of L. monocytogenes on cantaloupes during storage (p<0.05), but cultivar did not influence L. monocytogenes (p>0.05). Populations of L. monocytogenes on stem scars of cantaloupes stored at 25°C increased by 1-2 log CFU/melon on day 1, and were significantly greater than those on cantaloupes stored at 4°C or 10°C (p<0.05), which remained constant or increased by approximately 0.3 log CFU/melon, respectively, over the same time period. A decrease of 2-5 log CFU/melon of L. monocytogenes occurred on the rinds of cantaloupes during storage by day 7, and were not significantly different at the three different storage temperatures (p>0.05). In trials performed in rind juice extracts, populations of L. monocytogenes decreased by 3 log CFU/mL when stored at 25°C by day 3, but grew by 3-4 log CFU/mL when stored at 4°C over 7days. Overall, site of contamination and storage temperature influenced the survival of L. monocytogenes on cantaloupes more than cantaloupe cultivar type.


Subject(s)
Cucumis melo/microbiology , Food Microbiology , Food Preservation/methods , Food Storage/methods , Listeria monocytogenes/growth & development , Listeria monocytogenes/isolation & purification , Colony Count, Microbial , Consumer Product Safety , Cucumis melo/classification , Disease Outbreaks , Humans , Listeriosis/microbiology , Temperature , Time Factors , United States
11.
Foodborne Pathog Dis ; 11(7): 555-67, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24814265

ABSTRACT

Bacterial pathogens may survive and regrow in finished compost due to incomplete thermal inactivation during or recontamination after composting. Twenty-nine finished composts were obtained from 19 U.S. states and were separated into three broad feedstock categories: biosolids (n=10), manure (n=4), and yard waste (n=15). Three replicates of each compost were inoculated with ≈ 1-2 log CFU/g of nonpathogenic Escherichia coli, Salmonella spp., and E. coli O157:H7. The U.S. Environmental Protection Agency's (EPA) protocols and U.S. Composting Council's (USCC) Test Methods for the Examination of Composting and Compost (TMECC) were compared to determine which method recovered higher percentages of inoculated E. coli (representing fecal coliforms) and Salmonella spp. from 400-g samples of finished composts. Populations of Salmonella spp. and E. coli O157:H7 were determined over 3 days while stored at 25°C and compared to physicochemical parameters to predict their respective regrowth potentials. EPA Method 1680 recovered significantly (p=0.0003) more inoculated E. coli (68.7%) than TMECC 07.01 (48.1%) due to the EPA method using more compost in the initial homogenate, larger transfer dilutions, and a larger most probable number scheme compared to TMECC 07.01. The recoveries of inoculated Salmonella spp. by Environmental Protection Agency Method 1682 (89.1%) and TMECC 07.02 (72.4%) were not statistically significant (p=0.44). The statistically similar recovery percentages may be explained by the use of a nonselective pre-enrichment step used in both methods. No physicochemical parameter (C:N, moisture content, total organic carbon) was able to serve as a sole predictor of regrowth of Salmonella spp. or E. coli O157:H7 in finished compost. However, statistical analysis revealed that the C:N ratio, total organic carbon, and moisture content all contributed to pathogen regrowth potential in finished composts. It is recommended that the USCC modify TMECC protocols to test larger amounts of compost in the initial homogenate to facilitate greater recovery of target organisms.


Subject(s)
Escherichia coli O157/isolation & purification , Salmonella/isolation & purification , Soil/standards , Chemical Phenomena , Colony Count, Microbial , Feces/microbiology , Manure/microbiology , Soil Microbiology/standards , United States , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...