Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(6): 4939-4953, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38275003

ABSTRACT

Many exciting innovations have been made in the development of assembling peptoid materials. Typically, these have utilised large oligomeric sequences, though elsewhere the study of peptide self-assembly has yielded numerous examples of assemblers below 6-8 residues in length, evidencing that minimal peptoid assemblers are not only feasible but expected. A productive means of discovering such materials is through the application of in silico screening methods, which often benefit from the use of coarse-grained molecular dynamics (CG-MD) simulations. At the current level of development, CG models for peptoids are insufficient and we have been motivated to develop a Martini forcefield compatible peptoid model. A dual bottom-up and top-down parameterisation approach has been adopted, in keeping with the Martini parameterisation methodology, targeting the reproduction of atomistic MD dynamics and trends in experimentally obtained log D7.4 partition coefficients, respectively. This work has yielded valuable insights into the practicalities of parameterising peptoid monomers. Additionally, we demonstrate that our model can reproduce the experimental observations of two very different peptoid assembly systems, namely peptoid nanosheets and minimal tripeptoid assembly. Further we can simulate the peptoid helix secondary structure relevant for antimicrobial sequences. To be of maximum usefulness to the peptoid research community, we have developed freely available code to generate all requisite simulation files for the application of this model with Gromacs MD software.

2.
J Phys Chem B ; 127(49): 10601-10614, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38038956

ABSTRACT

Peptoids are structural isomers of natural peptides, with side chain attachment at the amide nitrogen, conferring this class of compounds with the ability to access both cis and trans ω torsions as well as an increased diversity of ψ/φ states with respect to peptides. Sampling within these dimensions is controlled through side chain selection, and an expansive set of viable peptoid residues exists. It has been shown recently that "minimal" di- and tripeptoids with aromatic side chains can self-assemble into highly ordered structures, with size and morphological definition varying as a function of sequence pattern (e.g., XFF and FXF, where X = a nonaromatic peptoid monomer). Aromatic groups, such as phenylalanine, are regularly used in the design of minimal peptide assemblers. In recognition of this, and to draw parallels between these compounds classes, we have developed a series of descriptors for intramolecular dynamics of aromatic side chains to discern whether these dynamics, in a preassembly condition, can be related to experimentally observed nanoscale assemblies. To do this, we have built on the atomistic peptoid force field reported by Weiser and Santiso (CGenFF-WS) through the rigorous fitting of partial charges and the collation of Charmm General Force Field (CGenFF) parameters relevant to these systems. Our study finds that the intramolecular dynamics of side chains, for a given sequence, is dependent on the specific combination of backbone ω torsions and that homogeneity of sampling across these states correlates well with the experimentally observed ability to assemble into nanomorphologies with long-range order. Sequence patterning is also shown to affect sampling, in a manner consistent for both tripeptoids and tripeptides. Additionally, sampling similarities between the nanofiber forming tripeptoid, Nf-Nke-Nf in the cc state, and the nanotube forming dipeptide FF, highlight a structural motif which may be relevant to the emergence of extended linear assemblies. To assess these properties, a variety of computational approaches have been employed.

3.
Phys Chem Chem Phys ; 25(16): 11522-11529, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039328

ABSTRACT

Self-assembly of modified amino acids facilitate the formation of various structures that have unique properties and therefore serve as excellent bio-organic scaffolds for diverse applications. Self-assembly of Fmoc protected single amino acids has attracted great interest owing to their ease of synthesis and applications as functional materials. Smaller assembly units enable synthetic convenience and potentially broader adoption. Herein, we demonstrate the ability to control the morphologies resulting from self-assembly of Fmoc modified aliphatic single amino acids (Fmoc-SAAs) namely, Alanine, Valine, Leucine, Isoleucine, and Proline. Controlled morphological transitions were observed through solvent variation and the mechanism that allows this control was investigated using coarse-grained molecular dynamics simulations. These show that FmocA can form well defined crystalline structures through uniform parallel Fmoc stacking and the optimization of ion concentrations, which is not observed for the other Fmoc-SAAs. We demonstrate that Fmoc protected aliphatic single amino acids are novel scaffolds for the design of distinct micro/nanostructures through a bottom-up approach that can be tuned by control of the environmental parameters.


Subject(s)
Amino Acids , Nanostructures , Solvents , Amino Acids/chemistry , Nanostructures/chemistry , Leucine , Molecular Dynamics Simulation , Fluorenes/chemistry
4.
J Phys Chem Lett ; 13(18): 4046-4051, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35486900

ABSTRACT

pH dependence abounds in biochemical systems; however, many simulation methods used to investigate these systems do not consider this property. Using a modified version of the hybrid non-equilibrium molecular dynamics (MD)/Monte Carlo algorithm, we include a stochastic charge neutralization method, which is particularly suited to the MARTINI force field and enables artifact-free Ewald summation methods in electrostatic calculations. We demonstrate the efficacy of this method by reproducing pH-dependent self-assembly and self-organization behavior previously reported in experimental literature. In addition, we have carried out experimental oleic acid titrations where we report the results in a more relevant way for the comparison with computational methods than has previously been done.


Subject(s)
Algorithms , Molecular Dynamics Simulation , Hydrogen-Ion Concentration , Monte Carlo Method , Static Electricity
5.
RSC Adv ; 11(48): 30353-30360, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-35480255

ABSTRACT

Development of low cost biosensing using convenient and environmentally benign materials is important for wide adoption and ultimately improved healthcare and sustainable development. Immobilized antibodies are often incorporated as an essential biorecognition element in point-of-care biosensors but these proteins are costly. We present a strategy of combining convenient and low-cost surface functionalization approaches for increasing the overall binding activity of antibody functionalized natural and synthetic fibers. We demonstrate a simple one-step in situ silica NP growth protocol for increasing the surface area available for functionalization on cotton and polyester fabrics as well as on nanoporous cellulose substrates. Comparing this effect with the widely adopted and low cost plant-based polyphenol coating to enhance antibody immobilization, we find that both approaches can similarly increase overall surface activity, and we illustrate conditions under which the two approaches can produce an additive effect. Furthermore, we introduce co-immobilization of antibodies with a sacrificial "steric helper" protein for further enhancing surface activities. In combination, several hundred percent higher activities compared to physical adsorption can be achieved while maintaining a low amount of antibodies used, thus paving a practical path towards low cost biosensing.

6.
Front Chem ; 8: 416, 2020.
Article in English | MEDLINE | ID: mdl-32528930

ABSTRACT

Poly(N-substituted glycine) "peptoids" are an interesting class of peptidomimics that can resist proteolysis and mimic naturally found antimicrobial peptides (AMPs), which exhibit wide spectrum activity against bacteria. This work investigates the possibility of modifying peptoid AMP mimics (AMPMs) with aliphatic lipid "tails" to generate "lipopeptoids" that can assemble into micellar nanostructures, and evaluates their antimicrobial activities. Two families of AMPMs with different distributions of hydrophobic and cationic residues were employed-one with a uniform repeating amphiphilicity, the other with a surfactant-like head-to-tail amphiphilicity. To further evaluate the interplay between self-assembly and activity, the lipopeptoids were variously modified at the AMPM chain ends with a diethylene glycol (EG2) and/or a cationic group (Nlys-Nlys dipeptoid) to adjust amphiphilicity and chain flexibility. Self-assembly was investigated by critical aggregation concentration (CAC) fluorescence assays and dynamic light scattering (DLS). The structure of a key species was also verified by small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM). To screen for antibacterial properties, we measured the minimum inhibitory concentrations (MIC) against S. aureus, E. coli, and P. aeruginosa. We found that certain combinations of lipid tail and AMPM sequences exhibit increased antibacterial activity (i.e., decreased MICs). Perhaps counter-intuitively, we were particularly interested in increased MICs in combination with low CACs. Concealing antimicrobial interactions due to packing of AMPMs in nano-assemblies could pave the way to AMPMs that may be "inert" even if unintentionally released and prevent microbes from gaining resistance to the lipopeptoids. Overall, incorporation of EG2 significantly improved lipopeptoids packing while the hydrophobic tail length was found to have a major influence over the MIC. One particular sequence, which we named C15-EG2-(kss)4, exhibited a very low CAC of 34 µM (0.0075 wt.%) and a significantly increased MIC above values for the unmodified AMPM. With the sequence design trends uncovered from this study, future work will focus on discovering more species such as C15-EG2-(kss)4 and on investigating release mechanisms and the potency of the released lipopeptoids.

7.
ACS Macro Lett ; 9(4): 494-499, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337093

ABSTRACT

Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble "minimal" sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.

8.
Anal Bioanal Chem ; 412(14): 3299-3315, 2020 May.
Article in English | MEDLINE | ID: mdl-32107572

ABSTRACT

Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.

9.
Chemistry ; 26(26): 5789-5793, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32059067

ABSTRACT

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) "peptoids" are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide "click" coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a "volumetric" spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bacteria/drug effects , Peptoids/chemistry , Anti-Bacterial Agents/pharmacology , Biofouling
10.
ACS Macro Lett ; 9(10): 1415-1416, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33552673

ABSTRACT

[This corrects the article DOI: 10.1021/acsmacrolett.9b01010.].

11.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31585990

ABSTRACT

The methylotrophic yeast Pichia pastoris has been utilized for heterologous protein expression for over 30 years. Because P. pastoris secretes few of its own proteins, the exported recombinant protein is the major polypeptide in the extracellular medium, making purification relatively easy. Unfortunately, some recombinant proteins intended for secretion are retained within the cell. A mutant strain isolated in our laboratory, containing a disruption of the BGS13 gene, displayed elevated levels of secretion for a variety of reporter proteins. The Bgs13 peptide (Bgs13p) is similar to the Saccharomyces cerevisiae protein kinase C 1 protein (Pkc1p), but its specific mode of action is currently unclear. To illuminate differences in the secretion mechanism between the wild-type (wt) strain and the bgs13 strain, we determined that the disrupted bgs13 gene expressed a truncated protein that had reduced protein kinase C activity and a different location in the cell, compared to the wt protein. Because the Pkc1p of baker's yeast plays a significant role in cell wall integrity, we investigated the sensitivity of the mutant strain's cell wall to growth antagonists and extraction by dithiothreitol, determining that the bgs13 strain cell wall suffered from inherent structural problems although its porosity was normal. A proteomic investigation of the bgs13 strain secretome and cell wall-extracted peptides demonstrated that, compared to its wt parent, the bgs13 strain also displayed increased release of an array of normally secreted, endogenous proteins, as well as endoplasmic reticulum-resident chaperone proteins, suggesting that Bgs13p helps regulate the unfolded protein response and protein sorting on a global scale.IMPORTANCE The yeast Pichia pastoris is used as a host system for the expression of recombinant proteins. Many of these products, including antibodies, vaccine antigens, and therapeutic proteins such as insulin, are currently on the market or in late stages of development. However, one major weakness is that sometimes these proteins are not secreted from the yeast cell efficiently, which impedes and raises the cost of purification of these vital proteins. Our laboratory has isolated a mutant strain of Pichia pastoris that shows enhanced secretion of many proteins. The mutant produces a modified version of Bgs13p. Our goal is to understand how the change in the Bgs13p function leads to improved secretion. Once the Bgs13p mechanism is illuminated, we should be able to apply this understanding to engineer new P. pastoris strains that efficiently produce and secrete life-saving recombinant proteins, providing medical and economic benefits.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Pichia/genetics , Pichia/metabolism , Protein Translocation Systems/genetics , Protein Translocation Systems/metabolism , Amino Acid Sequence , Bacterial Secretion Systems , Cell Wall/chemistry , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , Molecular Chaperones/metabolism , Protein Kinase C/metabolism , Proteomics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
12.
Chem Commun (Camb) ; 55(42): 5867-5869, 2019 May 25.
Article in English | MEDLINE | ID: mdl-31049525

ABSTRACT

An aromatic peptoid analogue of the diphenylalanine dipeptide self-assembles in aqueous solution and the first crystal structure was obtained for this class of compound. This reveals molecular packing stabilized by networks of hydrogen bonds. Free-floating nanosheet lamellar structures are observed in solution, which form via cooperative intermolecular interactions driven by π stacking.

13.
Langmuir ; 35(5): 1483-1494, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30142978

ABSTRACT

Using molecular dynamics (MD) simulations, we study the molecular behavior and hydration properties of a set of zwitterionic "peptoid" brushes, grafted on a rutile surface, that has been previously reported to exhibit excellent resistance against protein adsorption and cell attachment. Peptoids are novel poly( N-substituted glycine) peptide mimics with the side chains attached to amide nitrogens. They constitute a unique model polymer system because hundreds of side chains have been demonstrated, and the exact chain length and sequence order of the residues/monomers may be specified in experiments. In this report, we vary the brush grafting density as well as the side chain/polymer molecular volume. We include in our study polysarcosine as an uncharged comparison with a small polymer chain cross-section. Sarcosine is the simplest peptoid residue with only a nominally hydrophobic methyl group as side chain, but is also reported to exhibit high antifouling performance. Overall, we show in detail how molecular volume and hydration effects are intertwined in a zwitterionic polymer brush. For example, the zwitterionic design significantly promotes extended chain conformations and could actually lower the overall electrostatic potential. Some properties promoted by the balanced charges, such as chain flexibility and hydration, increase more prominently at "low" to "intermediate" chain densities. These and other observations should provide insight on the molecular behavior of peptoids and inform the design of zwitterionic antifouling polymer brushes.

14.
Chem Commun (Camb) ; 53(13): 2178-2181, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28144675

ABSTRACT

Poly(N-substituted glycine) "peptoids" constitute a promising class of peptide-mimetic materials. We introduce the self-assembly of lipopeptoids into spherical micelles ca. 5 nm in diameter as well as larger assemblies by varying the peptoid sequence design. Our results point to design rules for the self-assembly of peptoid nanostructures, enabling the creation of stable, ultra-small peptidomimetic nanospheres.


Subject(s)
Glycine/analogs & derivatives , Lipids/chemistry , Micelles , Nanostructures/chemistry , Peptoids/chemistry , Surface-Active Agents/chemistry , Lipopeptides/chemistry , Particle Size
15.
Biomimetics (Basel) ; 2(3)2017 Sep.
Article in English | MEDLINE | ID: mdl-29360110

ABSTRACT

As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 µg mL-1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions.

16.
Adv Mater Interfaces ; 2(1)2015 Jan 07.
Article in English | MEDLINE | ID: mdl-26167449

ABSTRACT

Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevent non-specific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) "peptoids" are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platform for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with a different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs were found to give rise to distinct but subtle differences in properties. The results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.

17.
Biomater Sci ; 2(5): 627-633, 2014 May 01.
Article in English | MEDLINE | ID: mdl-32481842

ABSTRACT

Poly(N-substituted glycine) "peptoids" have conventionally been exploited for drug discovery and therapeutics due to their structural similarity to peptides, protease resistance, and relative ease of synthesis. This mini-review highlights recent reports of peptoid self-assembled nanostructures and macromolecular interfaces relevant to biomaterials science. The results illustrate how the versatility of peptoid design and synthesis could be exploited to generate multifunctional, modular and precisely tunable biointerfaces and biomaterials.

19.
Langmuir ; 28(46): 16099-107, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23101930

ABSTRACT

Poly(N-substituted glycine) "peptoids" are a class of peptidomimetic molecules receiving significant interest as engineered biomolecules. Sarcosine (i.e., poly(N-methyl glycine)) has the simplest side chain chemical structure of this family. In this Article, we demonstrate that surface-grafted polysarcosine (PSAR) brushes exhibit excellent resistance to nonspecific protein adsorption and cell attachment. Polysarcosine was coupled to a mussel adhesive protein-inspired DOPA-Lys pentapeptide, which enabled solution grafting and control of the surface chain density of the PSAR brushes. Protein adsorption was found to decrease monotonically with increasing grafted chain densities, and protein adsorption could be completely inhibited above certain critical chain densities specific to different polysarcosine chain lengths. The dependence of protein adsorption on chain length and density was also investigated by a molecular theory. PSAR brushes at high chain length and density were shown to resist fibroblast cell attachment over a 7 week period, as well as resist the attachment of some clinically relevant bacterial strains. The excellent antifouling performance of PSAR may be related to the highly hydrophilic character of polysarcosine, which was evident from high-pressure liquid chromatography measurements of polysarcosine and water contact angle measurements of the PSAR brushes. Peptoids have been shown to resist proteolytic degradation, and polysarcosine could be produced in large quantities by N-carboxy anhydride polymerization. In summary, surface-grafted polysarcosine peptoid brushes hold great promise for antifouling applications.


Subject(s)
Bacterial Adhesion , Peptides/chemistry , Sarcosine/analogs & derivatives , 3T3 Cells , Adsorption , Animals , Cell Adhesion , Escherichia coli/cytology , Fibroblasts/cytology , Materials Testing/methods , Mice , Peptoids/chemistry , Proteins/chemistry , Pseudomonas aeruginosa/cytology , Sarcosine/chemistry , Staphylococcus epidermidis/cytology , Structure-Activity Relationship , Surface Properties
20.
J Phys Chem B ; 110(31): 15381-8, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884258

ABSTRACT

Thin films of mixtures of asymmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) diblock copolymers and PMMA homopolymers with cylindrical PMMA microdomains oriented normal to the substrate surface were used to couple optical modes in the Kretschmann configuration, and their optical properties were investigated by optical waveguide spectroscopy (OWS). The nanopore formation in the block copolymer (BCP) waveguide layer via selective solvent swelling and subsequent reannealing was monitored in terms of shifts in the coupling mode angles. The sequential swelling/reannealing of the initial mixture film resulted in a number of discrete or partially interconnected pores instead of cylindrical pores with a high aspect ratio. The simultaneous processes occurring inside and on top of the BCP waveguide layer were discerned independently with high selectivity for p- and s-polarization.


Subject(s)
Membranes, Artificial , Nanostructures/chemistry , Optics and Photonics , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Particle Size , Porosity , Sensitivity and Specificity , Solvents/chemistry , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...