Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 895: 165108, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37356771

ABSTRACT

Bacterial migration is crucial for the stability of activated sludge but rarely reported. The static distribution was explored by changes in bacteria concentration with extracellular polymeric substances (EPS) extractions. Next, denitrification and aeration were conducted as normal running conditions for examining the bacterial migration between floc-attached and dispersed growth. Above observations were further explored by conducting copper ion (Cu2+) shock as an extreme running condition. After extracting EPS, low nucleic acid (LNA) bacteria migrated from the sludge to the supernatant primarily, and high nucleic acid (HNA) bacteria remained in the residual sludge, suggesting that HNA bacteria mainly distributed inside the sludge while LNA bacteria outside the sludge. During the denitrification process, LNA bacteria migrated out of flocs, which increased by 6.94 × 106 events/mL in the supernatant. During the feast phase of aeration, LNA bacteria grew attached to flocs, causing the increased flocs diameter from 45.60 to 47.40 µm. During the following aerobic famine phase, LNA bacteria grew dispersedly, but HNA bacteria remained unchanged. However, a further severe famine phase drove HNA bacteria to be dispersed, breaking flocs with the decreased diameter from 48.10 to 46.50 µm. When the Cu2+ shock was employed, LNA and HNA bacteria increased but the LNA/HNA ratio decreased in the supernatant, indicating more HNA bacteria migrating to the dispersed phase. From a structural perspective, HNA bacteria distributed inside the sludge and functioned as the backbone of flocs, undertaking the maintenance of flocs stability primarily; while LNA bacteria distributed outside the sludge and functioned as filling materials, having a secondary influence on flocs stability. These processes were also probed by respirogram exactly, correlating the system-scale measurement and microscale migrations and providing an early warning signal under abnormal circumstances. The processed HNA-backbone theory is promising for regulating the stability of activated sludge based on bacterial migrations.


Subject(s)
Nucleic Acids , Sewage , Sewage/microbiology , Copper , Flocculation , Bacteria
2.
Water Res ; 178: 115834, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32339865

ABSTRACT

Bioactivity and settleability of activated sludge are essential for the operation of activated sludge systems in wastewater treatment. In this work, the fractal dimension of sludge image is proposed as a tool to evaluate these two factors. The specific endogenous respiration rate (SOURe) and the specific quasi-endogenous respiration rate (SOURq) are found to be more dependent on the 3D structure of sludge than the specific total respiration rate (SOURt). The relationship between the fractal structure and bioactivity suggests that the bioactivity governs the acceptable upper bound of the fractal dimension (Df), as at its theoretical maximum of 2.0, the non-porous compact flocs are predominant. The settleability or the biomass concentration determines the acceptable lower bound of Df, as at its theoretical minimum of 1.0, the free-swimming microbes are predominant. Our data reveal that the activated sludge has an acceptable fractal dimension Df in a range of 1.07-1.68. In practice, the fractal dimension should be controlled at a reasonable value as there is a trade-off between the bioactivity and physical structure to achieve better performance. A decrease or increase in the fractal dimension can serve as a signal for the change of the operational status, and this is further elucidated from the perspective of settling tanks using state point analysis. Compared with respirogram measurement, measuring fractal dimension is a complex process and its online implementation is challenging. Also, the measured value varies with the methods used. In addition, the difference in their theoretical values depends on the homogeneity of the sludge structure. Since the fractal dimension Df reflects both bioactivity and settleability of the sludge but is difficult to measure, in this work a relationship between Df and the easily measurable respirogram is established, and a method using the respirogram as a proxy of Df is proposed to control the bioactivity and settleability simultaneously. This respiration-based method is able to simultaneously control aeration and settling tanks, and could serve as an efficient tool for the management of wastewater treatment plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Biomass , Bioreactors , Fractals
3.
Sci Total Environ ; 664: 45-52, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30739852

ABSTRACT

Estimation of heterotrophic biomass concentration in activated sludge is essential to the design, operation and management of activated sludge process for wastewater treatment plants (WWTPs), and many methods have been developed for such a purpose. In this study, three respiration-based methods: the Exponential-growth-rate-based method (Exp-M), the Maximum-respiration-rate-based method (Max-M) and the Endogenous-respiration-rate-based method (End-M), which are frequently used for determining kinetic parameters in activated sludge models, were comparatively examined using experimental results from both full-scale municipal WWTPs and laboratory-scale reactors. Our study revealed the pros and cons of each method, which is valuable for method selection in different applications. The End-M can estimate all the fraction of biomass. However, the proper control of measuring condition is of great challenge. The Exp-M can only determine the exponential growth part of biomass as conditions employed during measuring may make a considerable part of biomass in a nongrowth status, resulting underestimation or even failure of calculation. The Max-M can determine the viable biomass including the nongrowth part, and it is recommended for rapid assessment of biomass. The Max-M was modified after the introduction of a coefficient SOURSRT=0 (the specific oxygen utilization rate when the sludge retention time was assumed zero) and was validated by using the experimental results reported in previous studies. Because of its simplicity and much improved accuracy, the modified Max-M method is able to provide more useful information about activated sludge compositions and has a promising application potential in wastewater treatment plants.


Subject(s)
Waste Disposal, Fluid/methods , Biomass , Bioreactors , Heterotrophic Processes , Kinetics , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...