Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623683

ABSTRACT

Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T1 relaxation time mapping data to compare the total variation, low-rank, and Huber penalty function approaches to regularization to provide insights into the relative performance of these image reconstruction models. Simulation and ex vivo specimen data were used to determine the best compressed sensing model as measured by normalized root mean squared error and structural similarity index. The large-scale compressed sensing models were solved by combining a GPU implementation of a preconditioned primal-dual proximal splitting algorithm to provide high-quality T1 maps within a feasible computation time. The model combining spatial total variation and locally low-rank regularization yielded the best performance, followed closely by the model combining spatial and contrast dimension total variation. Computation times ranged from 2 to 113 min, with the low-rank approaches taking the most time. The differences between the compressed sensing models are not necessarily large, but the overall performance is heavily dependent on the imaged object.

2.
J Imaging ; 8(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35735956

ABSTRACT

Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To reduce the scanning time, undersampled data may be combined with compressed sensing (CS) reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain the parameter maps. We propose a direct, embedded reconstruction method for T1ρ mapping. The proposed method capitalizes on a known signal model to directly reconstruct the desired parameter map using a non-linear optimization model. The proposed reconstruction method also allows directly regularizing the parameter map of interest and greatly reduces the number of unknowns in the reconstruction, which are key factors in the performance of the reconstruction method. We test the proposed model using simulated radially sampled data from a 2D phantom and 2D cartesian ex vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model to two CS reconstruction models and in the cartesian test case also the direct inverse fast Fourier transform. The T1ρ RMSE of the embedded reconstructions was reduced by 37-76% compared to the CS reconstructions when using undersampled simulated data with the reduction growing with larger acceleration factors. The proposed, embedded model outperformed the reference methods on the experimental test case as well, especially providing robustness with higher acceleration factors.

3.
J Imaging ; 7(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-34460637

ABSTRACT

In dynamic MRI, sufficient temporal resolution can often only be obtained using imaging protocols which produce undersampled data for each image in the time series. This has led to the popularity of compressed sensing (CS) based reconstructions. One problem in CS approaches is determining the regularization parameters, which control the balance between data fidelity and regularization. We propose a data-driven approach for the total variation regularization parameter selection, where reconstructions yield expected sparsity levels in the regularization domains. The expected sparsity levels are obtained from the measurement data for temporal regularization and from a reference image for spatial regularization. Two formulations are proposed. Simultaneous search for a parameter pair yielding expected sparsity in both domains (S-surface), and a sequential parameter selection using the S-curve method (Sequential S-curve). The approaches are evaluated using simulated and experimental DCE-MRI. In the simulated test case, both methods produce a parameter pair and reconstruction that is close to the root mean square error (RMSE) optimal pair and reconstruction. In the experimental test case, the methods produce almost equal parameter selection, and the reconstructions are of high perceived quality. Both methods lead to a highly feasible selection of the regularization parameters in both test cases while the sequential method is computationally more efficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...