Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Gastroenterol ; 37(2): 133-141, 2024.
Article in English | MEDLINE | ID: mdl-38481787

ABSTRACT

Integrating artificial intelligence (AI) into gastrointestinal (GI) endoscopy heralds a significant leap forward in managing GI disorders. AI-enabled applications, such as computer-aided detection and computer-aided diagnosis, have significantly advanced GI endoscopy, improving early detection, diagnosis and personalized treatment planning. AI algorithms have shown promise in the analysis of endoscopic data, critical in conditions with traditionally low diagnostic sensitivity, such as indeterminate biliary strictures and pancreatic cancer. Convolutional neural networks can markedly improve the diagnostic process when integrated with cholangioscopy or endoscopic ultrasound, especially in the detection of malignant biliary strictures and cholangiocarcinoma. AI's capacity to analyze complex image data and offer real-time feedback can streamline endoscopic procedures, reduce the need for invasive biopsies, and decrease associated adverse events. However, the clinical implementation of AI faces challenges, including data quality issues and the risk of overfitting, underscoring the need for further research and validation. As the technology matures, AI is poised to become an indispensable tool in the gastroenterologist's arsenal, necessitating the integration of robust, validated AI applications into routine clinical practice. Despite remarkable advances, challenges such as operator-dependent accuracy and the need for intricate examinations persist. This review delves into the transformative role of AI in enhancing endoscopic diagnostic accuracy, particularly highlighting its utility in the early detection and personalized treatment of GI diseases.

2.
Front Genet ; 14: 1230998, 2023.
Article in English | MEDLINE | ID: mdl-37900178

ABSTRACT

Objective: Estrogen receptor breast cancer (BC) is characterized by the expression of estrogen receptors. It is the most common cancer among women, with an incidence rate of 2.26 million cases worldwide. The aim of this study was to identify differentially expressed genes and isoform switching between estrogen receptor positive and triple negative BC samples. Methods: The data were collected from ArrayExpress, followed by preprocessing and subsequent mapping from HISAT2. Read quantification was performed by StringTie, and then R package ballgown was used to perform differential expression analysis. Functional enrichment analysis was conducted using Enrichr, and then immune genes were shortlisted based on the ScType marker database. Isoform switch analysis was also performed using the IsoformSwitchAnalyzeR package. Results: A total of 9,771 differentially expressed genes were identified, of which 86 were upregulated and 117 were downregulated. Six genes were identified as mainly associated with estrogen receptor positive BC, while a novel set of ten genes were found which have not previously been reported in estrogen receptor positive BC. Furthermore, alternative splicing and subsequent isoform usage in the immune system related genes were determined. Conclusion: This study identified the differential usage of isoforms in the immune system related genes in cancer cells that suggest immunosuppression due to the dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...