Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 175: 113121, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34839956

ABSTRACT

Plastic litter pollution is one of the major concerns for the health of marine ecosystems worldwide. This pervasive form of pollution affects all oceans and seas and it's interacting with multiple levels of the marine food webs. In the European context, several pieces of legislation try to fight against this pervasive and ubiquitous form of pollution. Recently, EU Member States have agreed to a maximum threshold of litter items per coast length (20 items/100 m coastline). One major concern among stakeholders to reach this consensus was the transboundary litter, as measures need to be implemented in the country of origin. Henceforth, a solid method to estimate the amounts of the transboundary litter to a given Member State's coasts is needed. In this contribution, we use a combination of hydrodynamic and Lagrangian models for the Mediterranean Sea in order to understand the origin of coastal litter. Simulations show that the amount of transboundary litter in Mediterranean countries could be as large as 30% although both regional and seasonal differences could be significant.


Subject(s)
Ecosystem , Waste Products , Environmental Monitoring , Mediterranean Sea , Plastics , Waste Products/analysis
2.
Mar Pollut Bull ; 166: 112201, 2021 May.
Article in English | MEDLINE | ID: mdl-33714775

ABSTRACT

The main objectives of this work were the acquisition of new data on floating marine macro litter (FMML) and natural floating objects in the Arctic seas, an initial assessment of the level of pollution by FMML and an analysis of potential sources. The results of this study present the first data on FMML distribution in Russian Arctic shelf seas in relation to oceanographic conditions (i.e. position of water masses of different origin as described by temperature, salinity, dissolved oxygen and pH). The main finding of this study is that FMML was found only in the water of Atlantic origin, inflowing from the Barents Sea, where FMML average density on the observed transects was 0.92 items/ km2. Eastern parts of the study, Kara Sea, Laptev Sea and East Siberian Sea were practically free from FMML. No input from rivers was detected, at least in autumn, when the observations were performed.


Subject(s)
Environmental Monitoring , Oceanography , Arctic Regions , Oceans and Seas , Plastics , Russia
3.
Sci Total Environ ; 714: 136807, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31986392

ABSTRACT

Every year >4 million tonnes of plastic are estimated to enter the oceans and much of it comes from land-based sources through rivers and estuaries. To fill the lack of information related to plastic inputs from rivers, a harmonized approach based on visual observations for monitoring floating macro litter was followed in this work. We provide the results of one-year monitoring (October 2016-September 2017) in the Llobregat and El Besòs rivers, which are flowing through an industrialized and populated area nearby the city of Barcelona (Catalonia, NE Spain). Floating litter items categories were influenced by urban centres located along the rivers. Overall, similar litter composition was observed in both rivers with a prevalence of plastics, mainly related to the food and beverage sectors. Seasonal variability showed significant correlations with natural factors such as wind and rainfall. Approximately 0.4-0.6 tonnes of plastic per year were estimated to be loaded into the sea by these two Catalan rivers. This study contributes to enlarge our knowledge on anthropogenic riverine litter entering the NW Mediterranean Sea, providing a starting point for the development of further mitigation strategies.

4.
Article in English | MEDLINE | ID: mdl-31596687

ABSTRACT

This paper identifies knowledge gaps on the sustainability and impacts of plastics and presents some recommendations from an expert group that met at a special seminar organised by the European Commission at the end of 2018. The benefits of plastics in society are unquestionable, but there is an urgent need to better manage their value chain. The recently adopted European Strategy for Plastics stressed the need to tackle the challenges related to plastics with a focus on plastic litter including microplastics. Microplastics have been detected mainly in the marine environment, but also in freshwater, soil and air. Based on today's knowledge they may also be present in food products. Although nanoplastics have not yet been detected, it can be assumed that they are also present in the environment. This emerging issue presents challenges to better understand future research needs and the appropriate immediate actions to be taken to support the necessary societal and policy initiatives. It has become increasingly apparent that a broad and systematic approach is required to achieve sustainable actions and solutions along the entire supply chain. It is recognised that there is a pressing need for the monitoring of the environment and food globally. However, despite the number of research projects increasing, there is still a lack of suitable and validated analytical methods for detection and quantification of micro- and nanoplastics. There is also a lack of hazard and fate data which would allow for their risk assessment. Some priorities are identified in this paper to bridge the knowledge gaps for appropriate management of these challenges. At the same time it is acknowledged that there is a great complexity in the challenges that need to be tackled before a really comprehensive environmental assessment of plastics, covering their entire life cycle, will be possible.


Subject(s)
Food Contamination/analysis , Nanoparticles/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Food Analysis
5.
Mar Pollut Bull ; 112(1-2): 17-38, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27444857

ABSTRACT

Anthropogenic contaminants reach the marine environment mostly directly from land-based sources, but there are cases in which they are emitted or re-mobilized in the marine environment itself. This paper reviews the literature, with a predominant focus on the European environment, to compile a list of contaminants potentially released into the sea from sea-based sources and provide an overview of their consideration under existing EU regulatory frameworks. The resulting list contains 276 substances and for some of them (22 antifouling biocides, 32 aquaculture medicinal products and 34 warfare agents) concentrations and toxicity data are additionally provided. The EU Marine Strategy Framework Directive Descriptor 8, together with the Water Framework Directive and the Regional Sea Conventions, provides the provisions against pollution of marine waters by chemical substances. This literature review should inform about the current state of knowledge regarding marine contaminant sources and provide support for setting-up of monitoring approaches, including hotspots screening.


Subject(s)
Environmental Monitoring/methods , Seawater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/legislation & jurisprudence , Europe , Oceans and Seas
6.
Environ Sci Technol ; 45(10): 4315-22, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21526777

ABSTRACT

The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.


Subject(s)
Organic Chemicals/analysis , Plankton/metabolism , Seawater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Hexachlorobenzene/analysis , Hexachlorobenzene/metabolism , Hexachlorocyclohexane/analysis , Hexachlorocyclohexane/metabolism , Mediterranean Sea , Organic Chemicals/metabolism , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data
8.
J Chromatogr A ; 1216(3): 302-15, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-18603257

ABSTRACT

The state of the art in monitoring chemical pollutants to assess water quality status according to Water Framework Directive (WFD) and the challenges associated with it have been reviewed. The article includes information on environmental quality standards (EQSs) proposed to protect the aquatic environment and humans against hazardous substances and the resulting monitoring requirements. Furthermore, minimum performance criteria for analytical methods and quality assurance issues have been discussed. The result of a survey of existing standard methods with a focus on European (EN) and international standards (ISO) for the analysis of chemical pollutants in water is reported and the applicability of those methods for the purpose of compliance checking with EQSs is examined. Approximately 75% of the 41 hazardous substances for which Europe-wide EQSs have been proposed can be reliably monitored in water with acceptable uncertainty when applying existing standardised methods. Monitoring in water encounters difficulties for some substances, e.g., short-chain chlorinated paraffins (SCCPs), polybrominated diphenyl ethers (PBDEs), tributyltin compounds, certain organochlorine pesticides and six-ring PAHs, mainly due to a lack of validated, sufficiently sensitive methods that are applicable in routine laboratory conditions. As WFD requires monitoring of unfiltered samples for organic contaminants more attention needs to be paid to the distribution of chemical pollutants between suspended particulate matter and the liquid phase. Methods allowing complete extraction of organic contaminants from whole water samples are required. From a quality assurance point of view, there is a need to organise interlaboratory comparisons specifically designed to the requirements of WFD (concentrations around EQSs, representative water samples) as well as field trials to compare sampling methodologies. Additional analytical challenges may arise when Member States have identified their river basin specific pollutants and after revision of the list of priority substances.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Animals , Europe , Food Chain , Humans
9.
Chemosphere ; 71(2): 306-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17959224

ABSTRACT

C7-C11 perfluorinated carboxylates (PFACs) and perfluorooctansulfonate (PFOS) were analysed in selected stretches of the River Po and its major tributaries. Analyses were performed by solid-phase extraction (SPE) with Oasis HLB cartridges and methanol elution followed by LC-MS-MS detection using 13C-labelled internal standards. High concentration levels ( approximately 1.3 microg l(-1)) of perfluorooctanoate (PFOA) were detected in the Tánaro River close to the city Alessandria. After this tributary, levels between 60 and 337 ng l(-1) were measured in the Po River on several occasions. The PFOA concentration close to the river mouth in Ferrara was between 60 and 174 ng l(-1). Using the river discharge flow data in m3 s(-1) at this point (average approximately 920 m3 s(-1) for the year 2006), a mass load of approximately 0.3 kg PFOA per hour or approximately 2.6 tons per year discharged in the Adriatic Sea has been calculated. PFOS concentration levels in the Po River at Ferrara were approximately 10 ng l(-1).


Subject(s)
Fluorocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring , Italy , Solid Phase Extraction , Tandem Mass Spectrometry , Time Factors
10.
J Environ Monit ; 9(6): 589-98, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17554431

ABSTRACT

Samples of air (gas and particulate phases), bulk deposition, aquatic settling material and sediments were collected in Lake Maggiore (LM) in order to determine their content of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Air (gas and particulate phases) concentrations were 0.5 pg m(-3), 80 pg m(-3), 13 pg m(-3) and 106 pg m(-3) for SigmaPCDD/Fs, SigmaPCBs, Sigma dioxin-like PCBs (DL-PCBs) and SigmaPBDEs, respectively. Deposition fluxes ranged from 0.7 ng m(-2) d(-1) for SigmaPCDD/Fs to 32 ng m(-2) d(-1) for SigmaPCBs. Aquatic settling material presented concentrations of 0.4 ng g(-1) dry weight (dw) for SigmaPCDD/Fs, 13 ng g(-1) dw for SigmaPCB, 3.4 ng g(-1) dw for SigmaDL-PCBs and 5.7 ng g(-1) dw for SigmaPBDEs. Mean sediment concentrations were 0.4 ng g(-1) dw for SigmaPCDD/Fs, 11 ng g(-1) dw for SigmaPCB, 3 ng g(-1) dw for SigmaDL-PCBs and 5.1 ng g(-1) dw for SigmaPBDEs. Similar PCDD/F and DL-PCB congener patterns in all the environmental compartments of LM point to an important, if not dominant, contribution of atmospheric deposition as source of these pollutants into LM. In contrast, PBDE congener distribution was not similar in the different environmental compartments. BDE 47 dominated air and settling material, while BDE 209 was the predominant congener in the bulk atmospheric deposition. Moreover, sediments showed two distinct PBDE congener profiles. Lower PBDE concentrated sediments were dominated by congeners 47 and 99, while BDE 209 dominated in higher PBDE concentrated samples. This suggests the influence of local sources as well as atmospheric input of PBDEs into LM.


Subject(s)
Benzofurans/analysis , Dioxins/analysis , Fresh Water/chemistry , Polybrominated Biphenyls/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Italy , Switzerland , Water/chemistry , Water Pollution, Chemical/analysis
11.
Anal Bioanal Chem ; 387(4): 1469-78, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200857

ABSTRACT

A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography-triple-quadrupole (tandem) mass spectrometry (LC-MS-MS). By extraction of 1-L water samples and concentration of the extract to 100 microL, method detection limits (MDLs) as low as 0.05-0.1 ng L(-1) were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L(-1)), the herbicides terbutylazine (7 ng L(-1)), atrazine (5 ng L(-1)), simazine (16 ng L(-1)), diuron (11 ng L(-1)), and atrazine-desethyl (11 ng L(-1)), the pharmaceuticals carbamazepine (9 ng L(-1)), sulfamethoxazole (10 ng L(-1)), gemfibrozil (1.7 ng L(-1)), and benzafibrate (1.2 ng L(-1)), the surfactant metabolite nonylphenol (15 ng L(-1)), its carboxylates (NPE(1)C 120 ng L(-1), NPE(2)C 7 ng L(-1), NPE(3)C 15 ng L(-1)) and ethoxylates (NPE( n )Os, n = 3-17; 300 ng L(-1)), perfluorinated surfactants (PFOS 9 ng L(-1), PFOA 3 ng L(-1)), and estrone (0.4 ng L(-1)). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local waterworks.


Subject(s)
Caprylates/analysis , Caprylates/chemistry , Fluorocarbons/analysis , Fluorocarbons/chemistry , Fresh Water/chemistry , Herbicides/analysis , Phenols/analysis , Water Pollutants, Chemical/analysis , Water Supply , Carboxylic Acids/chemistry , Chromatography, Liquid , Herbicides/chemistry , Ions/chemistry , Italy , Phenols/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/chemistry
12.
Chemosphere ; 66(4): 690-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16949635

ABSTRACT

Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.


Subject(s)
Chromatography, Liquid/methods , Phenols/analysis , Tandem Mass Spectrometry/methods , Textiles , Water Pollutants, Chemical/analysis , Belgium , Italy
13.
J Environ Monit ; 5(3): 384-94, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12833980

ABSTRACT

A multi-component screening analysis method for polar to medium-polar water pollutants was developed. Sample clean-up and group separation are performed by sequential solid-phase extraction (SSPE) using automated SPE with C18 and polymeric sorbent materials. Analyses are performed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) using a single-quadrupole instrument. More than 90 priority compounds of environmental interest--comprising the most important chemical and substance classes: phenols, carboxylic acids, aromatic sulfonates, aromatic amines, pharmaceuticals, surfactants, dyes, and pesticides--have been chosen for the experiments. The compounds are divided by the SSPE procedure into 3 different polarity classes. The extraction recoveries were determined in the 3 fractions for every single substance, and were for most of the analytes in the range of 50-100%. A mixture of hexane-dichloromethane was used for the elution of nonpolar compounds like alkylphenols from C18. Methanol and acetone are well suited for the elution of more polar substances. The limits of detection (LODs) were determined for all compounds. Effluents from municipal and industrial wastewater treatment plants (WWTPs) treating waste water from textile industries; and the corresponding receiving waters (rivers and lakes) have been analysed with the developed method. Urban and industrial pollution was observed in rivers and streams in the area north of Milan, Italy. In the water samples different phenols (nitrophenols, bisphenol A, nonylphenol), alkylphenol ethoxylate surfactants, their metabolites with endocrine disrupting potential, aromatic sulfonates, linear alkylbenzenesulfonate surfactants, dyes, pesticides, pharmaceuticals, and a dichlorobenzidine compound were identified.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Automation , Chromatography, Liquid , Endocrine System/drug effects , Industrial Waste , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization , Textile Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...