Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Invest Dermatol ; 144(4): 811-819.e4, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37802293

ABSTRACT

Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand-induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Protein alpha Subunits , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits/genetics , Mutation , Calcium , Endothelial Cells/metabolism , Mosaicism , Calcium Signaling/genetics , Ligands
2.
J Invest Dermatol ; 144(4): 820-832.e9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37802294

ABSTRACT

Mosaic mutations in genes GNAQ or GNA11 lead to a spectrum of diseases including Sturge-Weber syndrome and phakomatosis pigmentovascularis with dermal melanocytosis. The pathognomonic finding of localized "tramlining" on plain skull radiography, representing medium-sized neurovascular calcification and associated with postnatal neurological deterioration, led us to study calcium metabolism in a cohort of 42 children. In this study, we find that 74% of patients had at least one abnormal measurement of calcium metabolism, the commonest being moderately low serum ionized calcium (41%) or high parathyroid hormone (17%). Lower levels of ionized calcium even within the normal range were significantly associated with seizures, and with specific antiepileptics despite normal vitamin D levels. Successive measurements documented substantial intrapersonal fluctuation in indices over time, and DEXA scans were normal in patients with hypocalcemia. Neurohistology from epilepsy surgery in five patients revealed not only intravascular, but perivascular and intraparenchymal mineral deposition and intraparenchymal microvascular disease in addition to previously reported findings. Neuroradiology review clearly demonstrated progressive calcium deposition in individuals over time. These findings and those of the adjoining paper suggest that calcium deposition in the brain of patients with GNAQ/GNA11 mosaicism may not be a nonspecific sign of damage as was previously thought, but may instead reflect the central postnatal pathological process in this disease spectrum.


Subject(s)
Calcinosis , Neurocutaneous Syndromes , Child , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Calcium/metabolism , Mosaicism , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Calcinosis/genetics
3.
J Am Soc Nephrol ; 34(12): 1991-2011, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37787550

ABSTRACT

SIGNIFICANCE STATEMENT: Kidney stone disease is a common disorder with poorly understood pathophysiology. Observational and genetic studies indicate that adiposity is associated with an increased risk of kidney stone disease. However, the relative contribution of general and central adipose depots and the mechanisms by which effects of adiposity on kidney stone disease are mediated have not been defined. Using conventional and genetic epidemiological techniques, we demonstrate that general and central adiposity are independently associated with kidney stone disease. In addition, one mechanism by which central adiposity increases risk of kidney stone disease is by increasing serum calcium concentration. Therapies targeting adipose depots may affect calcium homeostasis and help to prevent kidney stone disease. BACKGROUND: Kidney stone disease affects approximately 10% of individuals in their lifetime and is frequently recurrent. The disease is linked to obesity, but the mechanisms mediating this association are uncertain. METHODS: Associations of adiposity and incident kidney stone disease were assessed in the UK Biobank over a mean of 11.6 years/person. Genome-wide association studies and Mendelian randomization (MR) analyses were undertaken in the UK Biobank, FinnGen, and in meta-analyzed cohorts to identify factors that affect kidney stone disease risk. RESULTS: Observational analyses on UK Biobank data demonstrated that increasing central and general adiposity is independently associated with incident kidney stone formation. Multivariable MR, using meta-analyzed UK Biobank and FinnGen data, established that risk of kidney stone disease increases by approximately 21% per one standard deviation increase in body mass index (BMI, a marker of general adiposity) independent of waist-to-hip ratio (WHR, a marker of central adiposity) and approximately 24% per one standard deviation increase of WHR independent of BMI. Genetic analyses indicate that higher WHR, but not higher BMI, increases risk of kidney stone disease by elevating adjusted serum calcium concentrations (ß=0.12 mmol/L); WHR mediates 12%-15% of its effect on kidney stone risk in this way. CONCLUSIONS: Our study indicates that visceral adipose depots elevate serum calcium concentrations, resulting in increased risk of kidney stone disease. These findings highlight the importance of weight loss in individuals with recurrent kidney stones and suggest that therapies targeting adipose depots may affect calcium homeostasis and contribute to prevention of kidney stone disease.


Subject(s)
Adiposity , Kidney Calculi , Humans , Adiposity/genetics , Calcium , Risk Factors , Genome-Wide Association Study , Obesity/complications , Obesity, Abdominal/complications , Obesity, Abdominal/genetics , Waist-Hip Ratio , Body Mass Index , Kidney Calculi/epidemiology , Kidney Calculi/etiology , Mendelian Randomization Analysis
4.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283649

ABSTRACT

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
J Pediatr ; 257: 113367, 2023 06.
Article in English | MEDLINE | ID: mdl-36868303

ABSTRACT

OBJECTIVES: To evaluate the prevalence and degree of any neurodevelopmental abnormalities in children with familial hypocalciuric hypercalcemia type 3 (FHH3). STUDY DESIGN: A formal neurodevelopmental assessment was performed in children diagnosed with FHH3. The Vineland Adaptive Behavior Scales, which is a standardized parent report assessment tool for adaptive behavior, was used to assess communication, social skills, and motor function and to generate a composite score. RESULTS: Six patients were diagnosed with hypercalcemia between 0.1 and 8 years of age. All had neurodevelopmental abnormalities in childhood consisting of either global developmental delay, motor delay, expressive speech disturbances, learning difficulties, hyperactivity, or autism spectrum disorder. Four out of the 6 probands had a composite Vineland Adaptive Behavior Scales SDS of < -2.0, indicating adaptive malfunctioning. Significant deficits were observed in the domains of communication (mean SDS: -2.0, P < .01), social skills (mean SDS: -1.3, P < .05), and motor skills (mean SDS: 2.6, P < .05). Individuals were equally affected across domains, with no clear genotype-phenotype correlation. All family members affected with FHH3 also described evidence of neurodevelopmental dysfunction, including mild-to-moderate learning difficulties, dyslexia, and hyperactivity. CONCLUSION: Neurodevelopmental abnormalities appear to be a highly penetrant and common feature of FHH3, and early detection is warranted to provide appropriate educational support. This case series also supports consideration of serum calcium measurement as part of the diagnostic work-up in any child presenting with unexplained neurodevelopmental abnormalities.


Subject(s)
Autism Spectrum Disorder , Hypercalcemia , Kidney Diseases , Humans , Hypercalcemia/diagnosis , Hypercalcemia/genetics , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnosis , Communication , Genetic Association Studies
6.
J Bone Miner Res ; 38(6): 907-917, 2023 06.
Article in English | MEDLINE | ID: mdl-36970776

ABSTRACT

Familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2) are due to loss- and gain-of-function mutations, respectively, of the GNA11 gene that encodes the G protein subunit Gα11, a signaling partner of the calcium-sensing receptor (CaSR). To date, four probands with FHH2-associated Gα11 mutations and eight probands with ADH2-associated Gα11 mutations have been reported. In a 10-year period, we identified 37 different germline GNA11 variants in >1200 probands referred for investigation of genetic causes for hypercalcemia or hypocalcemia, comprising 14 synonymous, 12 noncoding, and 11 nonsynonymous variants. The synonymous and noncoding variants were predicted to be benign or likely benign by in silico analysis, with 5 and 3, respectively, occurring in both hypercalcemic and hypocalcemic individuals. Nine of the nonsynonymous variants (Thr54Met, Arg60His, Arg60Leu, Gly66Ser, Arg149His, Arg181Gln, Phe220Ser, Val340Met, Phe341Leu) identified in 13 probands have been reported to be FHH2- or ADH2-causing. Of the remaining nonsynonymous variants, Ala65Thr was predicted to be benign, and Met87Val, identified in a hypercalcemic individual, was predicted to be of uncertain significance. Three-dimensional homology modeling of the Val87 variant suggested it was likely benign, and expression of Val87 variant and wild-type Met87 Gα11 in CaSR-expressing HEK293 cells revealed no differences in intracellular calcium responses to alterations in extracellular calcium concentrations, consistent with Val87 being a benign polymorphism. Two noncoding region variants, a 40bp-5'UTR deletion and a 15bp-intronic deletion, identified only in hypercalcemic individuals, were associated with decreased luciferase expression in vitro but no alterations in GNA11 mRNA or Gα11 protein levels in cells from the patient and no abnormality in splicing of the GNA11 mRNA, respectively, confirming them to be benign polymorphisms. Thus, this study identified likely disease-causing GNA11 variants in <1% of probands with hypercalcemia or hypocalcemia and highlights the occurrence of GNA11 rare variants that are benign polymorphisms. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hypocalcemia , Humans , Hypocalcemia/genetics , Hypocalcemia/metabolism , Hypercalcemia/genetics , Calcium/metabolism , HEK293 Cells , Mutation/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism
7.
Nat Rev Endocrinol ; 19(1): 46-61, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36192506

ABSTRACT

Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.


Subject(s)
Lactation , Mammary Glands, Human , Female , Humans , Pregnancy , Mammary Glands, Human/metabolism , Oxytocin/metabolism , Placenta , Prolactin/metabolism , Lactation/metabolism
8.
J Bone Miner Res ; 37(11): 2315-2329, 2022 11.
Article in English | MEDLINE | ID: mdl-36245271

ABSTRACT

In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Infant, Newborn , Female , Humans , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/epidemiology , Hyperparathyroidism, Primary/genetics , Calcium , Hypercalcemia/genetics , Receptors, Calcium-Sensing/genetics , Parathyroid Hormone
9.
BMJ Open ; 12(8): e062478, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36041762

ABSTRACT

INTRODUCTION: Lactation is a hormonally controlled process that promotes infant growth and neurodevelopment and reduces the long-term maternal risk of diabetes, cardiovascular disease and breast cancer. Hormones, such as prolactin and progesterone, mediate mammary development during pregnancy and are critical for initiating copious milk secretion within 24-72 hours post partum. However, the hormone concentrations mediating lactation onset are ill defined. METHODS AND ANALYSIS: The primary objective of the investigating hormones triggering the onset of sustained lactation study is to establish reference intervals for the circulating hormone concentrations initiating postpartum milk secretion. The study will also assess how maternal factors such as parity, pregnancy comorbidities and complications during labour and delivery, which are known to delay lactation, may affect hormone concentrations. This single-centre observational study will recruit up to 1068 pregnant women over a 3-year period. A baseline blood sample will be obtained at 36 weeks' gestation. Participants will be monitored during postpartum days 1-4. Lactation onset will be reported using a validated breast fullness scale. Blood samples will be collected before and after a breastfeed on up to two occasions per day during postpartum days 1-4. Colostrum, milk and spot urine samples will be obtained on a single occasion. Serum hormone reference intervals will be calculated as mean±1.96 SD, with 90% CIs determined for the upper and lower reference limits. Differences in hormone values between healthy breastfeeding women and those at risk of delayed onset of lactation will be assessed by repeated measures two-way analysis of variance or a mixed linear model. Correlations between serum hormone concentrations and milk composition and volume will provide insights into the endocrine regulation of milk synthesis. ETHICS AND DISSEMINATION: Approval for this study had been granted by the East of England-Cambridgeshire and Hertfordshire Research Ethics Committee (REC No. 20/EE/0172), by the Health Research Authority (HRA), and by the Oxford University Hospitals National Health Service Foundation Trust. The findings will be published in high-ranking journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER: ISRCTN12667795.


Subject(s)
Breast Feeding , State Medicine , Female , Hormones , Humans , Infant , Lactation/physiology , Observational Studies as Topic , Postpartum Period , Pregnancy
10.
Eur J Endocrinol ; 187(1): 111-122, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35521792

ABSTRACT

Objective: The autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disorder characterised by immune dysregulation and autoimmune endocrine gland destruction. APS-1 is caused by biallelic mutations affecting the autoimmune regulator (AIRE) gene on chromosome 21q22.3, which facilitates immunological self-tolerance. The objective was to investigate >300 probands with suspected APS-1 or isolated hypoparathyroidism for AIRE abnormalities. Methods: Probands were assessed by DNA sequence analysis. Novel variants were characterised using 3D modelling of the AIRE protein. Restriction enzyme and microsatellite analysis were used to investigate for uniparental isodisomy. Results: Biallelic AIRE mutations were identified in 35 probands with APS-1 and 5 probands with isolated hypoparathyroidism. These included a novel homozygous p.(His14Pro) mutation, predicted to disrupt the N-terminal caspase activation recruitment domain of the AIRE protein. Furthermore, an apparently homozygous AIRE mutation, p.Leu323fs, was identified in an APS-1 proband, who is the child of non-consanguineous asymptomatic parents. Microsatellite analysis revealed that the proband inherited two copies of the paternal mutant AIRE allele due to uniparental isodisomy. Hypoparathyroidism was the most common endocrine manifestation in AIRE mutation-positive probands and >45% of those harbouring AIRE mutations had at least two diseases out of the triad of candidiasis, hypoparathyroidism, and hypoadrenalism. In contrast, type 1 diabetes and hypothyroidism occurred more frequently in AIRE mutation-negative probands with suspected APS-1. Around 30% of AIRE mutation-negative probands with isolated hypoparathyroidism harboured mutations in other hypoparathyroid genes. Conclusions: This study of a large cohort referred for AIRE mutational analysis expands the spectrum of genetic abnormalities causing APS-1.


Subject(s)
Hypoparathyroidism , Polyendocrinopathies, Autoimmune , Child , Germ Cells , Humans , Hypoparathyroidism/genetics , Mutation/genetics , Polyendocrinopathies, Autoimmune/genetics , Transcription Factors , Uniparental Disomy , AIRE Protein
11.
J Endocr Soc ; 6(5): bvac042, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35402765

ABSTRACT

Autosomal dominant hypocalcemia type 1 (ADH1) is a disorder of extracellular calcium homeostasis caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR). More than 35% of ADH1 patients have intracerebral calcifications predominantly affecting the basal ganglia. The clinical consequences of such calcifications remain to be fully characterized, although the majority of patients with these calcifications are considered to be asymptomatic. We report a 20-year-old female proband with a severe form of ADH1 associated with recurrent hypocalcemic and hypercalcemic episodes, persistent childhood hyperphosphatemia, and a low calcium/phosphate ratio. From the age of 18 years, she had experienced recurrent myoclonic jerks affecting the upper limbs that were not associated with epileptic seizures, extra-pyramidal features, cognitive impairment, or alterations in serum calcium concentrations. Computed tomography (CT) scans revealed calcifications of the globus pallidus regions of the basal ganglia bilaterally, and also the frontal lobes at the gray-white matter junction, and posterior horn choroid plexuses. The patient's myoclonus resolved following treatment with levetiracetam. CASR mutational analysis identified a reported germline gain-of-function heterozygous missense mutation, c.2363T>G; p.(Phe788Cys), which affects an evolutionarily conserved phenylalanine residue located in transmembrane domain helix 5 of the CaSR protein. Analysis of the cryo-electron microscopy CaSR structure predicted the wild-type Phe788 residue to form interactions with neighboring phenylalanine residues, which likely maintain the CaSR in an inactive state. The p.(Phe788Cys) mutation was predicted to disrupt these interactions, thereby leading to CaSR activation. These findings reveal myoclonus as a novel finding in an ADH1 patient with intracerebral calcifications.

12.
Eur J Endocrinol ; 186(2): R33-R63, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34863037

ABSTRACT

This European expert consensus statement provides recommendations for the diagnosis and management of primary hyperparathyroidism (PHPT), chronic hypoparathyroidism in adults (HypoPT), and parathyroid disorders in relation to pregnancy and lactation. Specified areas of interest and unmet needs identified by experts at the second ESE Educational Program of Parathyroid Disorders (PARAT) in 2019, were discussed during two virtual workshops in 2021, and subsequently developed by working groups with interest in the specified areas. PHPT is a common endocrine disease. However, its differential diagnosing to familial hypocalciuric hypercalcemia (FHH), the definition and clinical course of normocalcemic PHPT, and the optimal management of its recurrence after surgery represent areas of uncertainty requiring clarifications. HypoPT is an orphan disease characterized by low calcium concentrations due to insufficient PTH secretion, most often secondary to neck surgery. Prevention and prediction of surgical injury to the parathyroid glands are essential to limit the disease-related burden. Long-term treatment modalities including the place for PTH replacement therapy and the optimal biochemical monitoring and imaging surveillance for complications to treatment in chronic HypoPT, need to be refined. The physiological changes in calcium metabolism occurring during pregnancy and lactation modify the clinical presentation and management of parathyroid disorders in these periods of life. Modern interdisciplinary approaches to PHPT and HypoPT in pregnant and lactating women and their newborns children are proposed. The recommendations on clinical management presented here will serve as background for further educational material aimed for a broader clinical audience, and were developed with focus on endocrinologists in training.


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Hypoparathyroidism , Parathyroid Diseases , Adult , Calcium , Female , Humans , Hypercalcemia/complications , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/diagnosis , Hyperparathyroidism, Primary/therapy , Hypoparathyroidism/diagnosis , Infant, Newborn , Lactation , Parathyroid Hormone , Pregnancy
13.
Clin Endocrinol (Oxf) ; 97(4): 483-501, 2022 10.
Article in English | MEDLINE | ID: mdl-34935164

ABSTRACT

Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%-10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Calcium , Calcium, Dietary , Humans , Hypercalcemia/diagnosis , Hyperparathyroidism, Primary/diagnosis , Hyperparathyroidism, Primary/genetics , Phenotype , Receptors, Calcium-Sensing/genetics
14.
J Am Coll Cardiol ; 78(11): 1145-1165, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34503684

ABSTRACT

Medial arterial calcification (MAC) is a chronic systemic vascular disorder distinct from atherosclerosis that is frequently but not always associated with diabetes mellitus, chronic kidney disease, and aging. MAC is also a part of more complex phenotypes in numerous less common diseases. The hallmarks of MAC include disseminated and progressive precipitation of calcium phosphate within the medial layer, a prolonged and clinically silent course, and compromise of hemodynamics associated with chronic limb-threatening ischemia. MAC increases the risk of complications during vascular interventions and mitigates their outcomes. With the exception of rare monogenetic defects affecting adenosine triphosphate metabolism, MAC pathogenesis remains unknown, and causal therapy is not available. Implementation of genetics and omics-based approaches in research recognizing the critical importance of calcium phosphate thermodynamics holds promise to unravel MAC molecular pathogenesis and to provide guidance for therapy. The current state of knowledge concerning MAC is reviewed, and future perspectives are outlined.


Subject(s)
Arteries/pathology , Calcium Phosphates/metabolism , Vascular Calcification/etiology , Animals , Arteries/metabolism , Atherosclerosis/complications , Humans , Vascular Calcification/diagnostic imaging , Vascular Calcification/pathology , Vascular Calcification/therapy , Vascular Stiffness
15.
Nature ; 595(7867): 455-459, 2021 07.
Article in English | MEDLINE | ID: mdl-34194040

ABSTRACT

The calcium-sensing receptor (CaSR), a cell-surface sensor for Ca2+, is the master regulator of calcium homeostasis in humans and is the target of calcimimetic drugs for the treatment of parathyroid disorders1. CaSR is a family C G-protein-coupled receptor2 that functions as an obligate homodimer, with each protomer composed of a Ca2+-binding extracellular domain and a seven-transmembrane-helix domain (7TM) that activates heterotrimeric G proteins. Here we present cryo-electron microscopy structures of near-full-length human CaSR in inactive or active states bound to Ca2+ and various calcilytic or calcimimetic drug molecules. We show that, upon activation, the CaSR homodimer adopts an asymmetric 7TM configuration that primes one protomer for G-protein coupling. This asymmetry is stabilized by 7TM-targeting calcimimetic drugs adopting distinctly different poses in the two protomers, whereas the binding of a calcilytic drug locks CaSR 7TMs in an inactive symmetric configuration. These results provide a detailed structural framework for CaSR activation and the rational design of therapeutics targeting this receptor.


Subject(s)
Calcium/metabolism , Cryoelectron Microscopy , Protein Multimerization , Receptors, Calcium-Sensing/chemistry , Receptors, Calcium-Sensing/metabolism , Calcium/chemistry , Humans , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Receptors, Calcium-Sensing/ultrastructure , Substrate Specificity
17.
Hum Mol Genet ; 30(10): 880-892, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33729479

ABSTRACT

Adaptor protein 2 (AP2), a heterotetrameric complex comprising AP2α, AP2ß2, AP2µ2 and AP2σ2 subunits, is ubiquitously expressed and involved in endocytosis and trafficking of membrane proteins, such as the calcium-sensing receptor (CaSR), a G-protein coupled receptor that signals via Gα11. Mutations of CaSR, Gα11 and AP2σ2, encoded by AP2S1, cause familial hypocalciuric hypercalcaemia types 1-3 (FHH1-3), respectively. FHH3 patients have heterozygous AP2S1 missense Arg15 mutations (p.Arg15Cys, p.Arg15His or p.Arg15Leu) with hypercalcaemia, which may be marked and symptomatic, and occasional hypophosphataemia and osteomalacia. To further characterize the phenotypic spectrum and calcitropic pathophysiology of FHH3, we used CRISPR/Cas9 genome editing to generate mice harboring the AP2S1 p.Arg15Leu mutation, which causes the most severe FHH3 phenotype. Heterozygous (Ap2s1+/L15) mice were viable, and had marked hypercalcaemia, hypermagnesaemia, hypophosphataemia, and increases in alkaline phosphatase activity and fibroblast growth factor-23. Plasma 1,25-dihydroxyvitamin D was normal, and no alterations in bone mineral density or bone turnover were noted. Homozygous (Ap2s1L15/L15) mice invariably died perinatally. Co-immunoprecipitation studies showed that the AP2S1 p.Arg15Leu mutation impaired protein-protein interactions between AP2σ2 and the other AP2 subunits, and also with the CaSR. Cinacalcet, a CaSR positive allosteric modulator, decreased plasma calcium and parathyroid hormone concentrations in Ap2s1+/L15 mice, but had no effect on the diminished AP2σ2-CaSR interaction in vitro. Thus, our studies have established a mouse model that is representative for FHH3 in humans, and demonstrated that the AP2S1 p.Arg15Leu mutation causes a predominantly calcitropic phenotype, which can be ameliorated by treatment with cinacalcet.


Subject(s)
Adaptor Protein Complex 2/genetics , Adaptor Protein Complex sigma Subunits/genetics , Fibroblast Growth Factor-23/genetics , Hypercalcemia/genetics , Receptors, Calcium-Sensing/genetics , Animals , Bone Density/genetics , CRISPR-Cas Systems/genetics , Calcium/metabolism , Cinacalcet/pharmacology , Disease Models, Animal , Gene Editing , Humans , Hypercalcemia/drug therapy , Hypercalcemia/metabolism , Hypercalcemia/pathology , Mice , Mutation/genetics , Phenotype
18.
Clin Endocrinol (Oxf) ; 94(1): 34-39, 2021 01.
Article in English | MEDLINE | ID: mdl-32892370

ABSTRACT

CONTEXT: Primary hyperparathyroidism is a common condition and results in hypercalcaemia, especially in older women. Thus, it is critical to obtain a robust estimate for the upper limit of the reference interval for albumin-adjusted serum calcium in the general population. The current reference interval in use in the UK (Pathology Harmony range, 2.20 to 2.60 mmol/L) was based on a consensus. OBJECTIVES: To establish a reference interval for albumin-adjusted serum calcium in men and women. DESIGN: Cross-sectional study of men and women who did not have chronic kidney disease or vitamin D deficiency; outliers were identified statistically and then rejected and then a 99% reference interval was calculated. PATIENTS: 502 524 men and women aged 40 to 69 years from the UK Biobank Study. MEASUREMENTS: Serum total calcium, albumin, 25-hydroxyvitamin D, estimated glomerular function (eGFR). RESULTS: We developed an equation for albumin-adjusted serum calcium and applied it to 178 377 men and women who did not have chronic kidney disease or vitamin D deficiency. We identified 2962 (1.7%) as outliers, and when excluded, we report a 99% reference interval of 2.19 to 2.56 mmol/L (8.76 to 10.24 mg/dL). We found that for older (55-69 years) and younger women (40-55 years) the upper limits were 2.59 mmol/L and 2.57 mmol/L and that for all men, the upper limit was 2.55 mmol/L. CONCLUSIONS: We have established an upper limit of the reference range for older women that would identify all high outliers (2.60 mmol/L and above). The upper limit for young women and for men is lower, at 2.57 and 2.55 mmol/L respectively. The current reference interval in use has to be updated and improved based on these findings. These upper limits may prove helpful for identifying hypercalcaemic disorders like primary hyperparathyroidism in clinical practice.


Subject(s)
Calcium , Vitamin D , Aged , Cross-Sectional Studies , Female , Humans , Male , Parathyroid Hormone , Reference Values , Serum Albumin , United Kingdom
19.
JBMR Plus ; 4(10): e10402, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33103030

ABSTRACT

Calcilytics are calcium-sensing receptor (CaSR) antagonists that reduce the sensitivity of the CaSR to extracellular calcium. Calcilytics have the potential to treat autosomal dominant hypocalcemia type 1 (ADH1), which is caused by germline gain-of-function CaSR mutations and leads to symptomatic hypocalcemia, inappropriately low PTH concentrations, and hypercalciuria. To date, only one calcilytic compound, NPSP795, has been evaluated in patients with ADH1: Doses of up to 30 mg per patient have been shown to increase PTH concentrations, but did not significantly alter ionized blood calcium concentrations. The aim of this study was to further investigate NPSP795 for the treatment of ADH1 by undertaking in vitro and in vivo studies involving Nuf mice, which have hypocalcemia in association with a gain-of-function CaSR mutation, Leu723Gln. Treatment of HEK293 cells stably expressing the mutant Nuf (Gln723) CaSR with 20nM NPSP795 decreased extracellular Ca2+-mediated intracellular calcium and phosphorylated ERK responses. An in vivo dose-ranging study was undertaken by administering a s.c. bolus of NPSP795 at doses ranging from 0 to 30 mg/kg to heterozygous (Casr +/Nuf ) and to homozygous (Casr Nuf/Nuf ) mice, and measuring plasma PTH responses at 30 min postdose. NPSP795 significantly increased plasma PTH concentrations in a dose-dependent manner with the 30 mg/kg dose causing a maximal (≥10-fold) rise in PTH. To determine whether NPSP795 can rectify the hypocalcemia of Casr +/Nuf and Casr Nuf/Nuf mice, a submaximal dose (25 mg/kg) was administered, and plasma adjusted-calcium concentrations measured over a 6-hour period. NPSP795 significantly increased plasma adjusted-calcium in Casr +/Nuf mice from 1.87 ± 0.03 mmol/L to 2.16 ± 0.06 mmol/L, and in Casr Nuf/Nuf mice from 1.70 ± 0.03 mmol/L to 1.89 ± 0.05 mmol/L. Our findings show that NPSP795 elicits dose-dependent increases in PTH and ameliorates the hypocalcemia in an ADH1 mouse model. Thus, calcilytics such as NPSP795 represent a potential targeted therapy for ADH1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
J Pediatr Endocrinol Metab ; 33(9): 1231-1235, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32866121

ABSTRACT

Objectives Hypoparathyroidism is a rare disease in children that occurs as a result of autoimmune destruction of the parathyroid glands, a defect in parathyroid gland development or secondary to physical parathyroid gland disturbance. Typical symptoms of hypoparathyroidism present as hypocalcaemia and hyperphosphatemia due to decreased parathyroid hormone secretion and may lead to nerve and muscles disturbances resulting in clinical manifestation of tetany, arrhythmias and epilepsy. Currently, there is no conventional hormone replacement treatment for hypoparathyroidism and therapeutic approaches include normalising mineral levels using an oral calcium supplement and active forms of vitamin D. Case presentation We present the case of a 10-year-old girl with primary hypoparathyroidism who had no prior history of autoimmune disorders, but who subsequently developed systemic lupus erythematosus.


Subject(s)
Hypoparathyroidism/complications , Lupus Erythematosus, Systemic/pathology , Calcium/administration & dosage , Child , Dietary Supplements , Female , Humans , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/etiology , Prognosis , Vitamin D/administration & dosage , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...