Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1142228, 2023.
Article in English | MEDLINE | ID: mdl-37465668

ABSTRACT

In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.


Subject(s)
CD8-Positive T-Lymphocytes , Lung Transplantation , Humans , Perfusion/methods , Endothelial Cells , Lung Transplantation/methods , Lung/physiology , Inflammation
2.
Database (Oxford) ; 20232023 05 23.
Article in English | MEDLINE | ID: mdl-37221041

ABSTRACT

Chagas disease is a parasitical disease caused by Trypanosoma cruzi which affects ∼7 million people worldwide. Per year, ∼10 000 people die from this pathology. Indeed, ∼30% of humans develop severe chronic forms, including cardiac, digestive or neurological disorders, for which there is still no treatment. In order to facilitate research on Chagas disease, a manual curation of all papers corresponding to 'Chagas disease' referenced on PubMed has been performed. All deregulated molecules in hosts (all mammals, humans, mice or others) following T. cruzi infection were retrieved and included in a database, named ChagasDB. A website has been developed to make this database accessible to all. In this article, we detail the construction of this database, its contents and how to use it. Database URL https://chagasdb.tagc.univ-amu.fr.


Subject(s)
Chagas Disease , Humans , Animals , Mice , Databases, Factual , PubMed , Mammals
3.
J Thromb Haemost ; 21(9): 2528-2544, 2023 09.
Article in English | MEDLINE | ID: mdl-37085035

ABSTRACT

BACKGROUND: Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES: To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS: Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS: Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION: These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.


Subject(s)
Megakaryocytes , Thrombocytopenia , Humans , Cell Differentiation , Megakaryocytes/metabolism , Ribosomal Protein S6/metabolism , Single-Cell Analysis , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombopoiesis/genetics , Antigens, CD34 , ETS Translocation Variant 6 Protein
4.
FASEB J ; 33(11): 12447-12463, 2019 11.
Article in English | MEDLINE | ID: mdl-31557059

ABSTRACT

The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to its rapidly acquired resistance to all conventional treatments. Despite drug-specific mechanisms of resistance, none explains how these cells resist the stress induced by any kind of anticancer treatment. Activation of stress-response pathways relies on the post-translational modifications (PTMs) of involved proteins. Among all PTMs, those mediated by the ubiquitin family of proteins play a central role. Our aim was to identify alterations of ubiquitination, neddylation, and sumoylation associated with the multiresistant phenotype and demonstrate their implications in the survival of PDAC cells undergoing treatment. This approach pointed at an alteration of promyelocytic leukemia (PML) protein sumoylation associated with both gemcitabine and oxaliplatin resistance. We could show that this alteration of PML sumoylation is part of a general mechanism of drug resistance, which in addition involves the abnormal activation of NF-κB and cAMP response element binding pathways. Importantly, using patient-derived tumors and cell lines, we identified a correlation between the levels of PML expression and sumoylation and the sensitivity of tumors to anticancer treatments.-Swayden, M., Alzeeb, G., Masoud, R., Berthois, Y., Audebert, S., Camoin, L., Hannouche, L., Vachon, H., Gayet, O., Bigonnet, M., Roques, J., Silvy, F., Carrier, A., Dusetti, N., Iovanna, J. L., Soubeyran, P. PML hyposumoylation is responsible for the resistance of pancreatic cancer.


Subject(s)
Drug Resistance, Neoplasm , Promyelocytic Leukemia Protein/metabolism , Second Messenger Systems , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cyclic AMP/genetics , Cyclic AMP/metabolism , HEK293 Cells , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Promyelocytic Leukemia Protein/genetics , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL
...